马祥龙, 文海家, 张廷斌, 孙德亮, 潘明辰. 自动&可解释机器学习滑坡易发性评价模型[J]. 北京师范大学学报(自然科学版). DOI: 10.12202/j.0476-0301.2024019
引用本文: 马祥龙, 文海家, 张廷斌, 孙德亮, 潘明辰. 自动&可解释机器学习滑坡易发性评价模型[J]. 北京师范大学学报(自然科学版). DOI: 10.12202/j.0476-0301.2024019
MA Xianglong, WEN Haijia, ZHANG Tingbin, SUN Deliang, PAN Mingchen. An Automated and Explainable Machine Learning Model for Landslide Susceptibility Mapping[J]. Journal of Beijing Normal University(Natural Science). DOI: 10.12202/j.0476-0301.2024019
Citation: MA Xianglong, WEN Haijia, ZHANG Tingbin, SUN Deliang, PAN Mingchen. An Automated and Explainable Machine Learning Model for Landslide Susceptibility Mapping[J]. Journal of Beijing Normal University(Natural Science). DOI: 10.12202/j.0476-0301.2024019

自动&可解释机器学习滑坡易发性评价模型

An Automated and Explainable Machine Learning Model for Landslide Susceptibility Mapping

  • 摘要: 模型训练的复杂性和预测结果的难以解释极大限制了机器学习在滑坡易发性评价领域的发展.本研究基于SHAP-XGBoost算法构建综合可解释的滑坡易发性评价模型,将“可解释的人工智能(explainable artificial intelligence,XAI )”和“自动机器学习 (automated machine learning ,AutoML)”引入滑坡易发性评价研究,实现复杂模型训练、超参数优化、滑坡易发性评价制图和模型解释的自动化运行.该模型以网格单元和斜坡单元2种尺度在三峡库区奉节县的测试结果表明,模型实现了可解释的自动化滑坡易发性评价,具有较高的预测精度,基于网格单元与斜坡单元构建的模型测试集AUC值为0.875和0.873,准确率、精确度、召回率与F1分数值均远>0.5;SHAP算法可从全局与局部2个方面对模型进行解释,有助于理解模型决策成因与滑坡灾害的发生规律,此外,SHAP算法亦可解释单个评价单元的预测结果,具有较高的可信度,研究结果为自动机器学习与模型的可解释研究提供重要参考.

     

    Abstract: The complexity of model training and the difficulty in explaining prediction results greatly restrict the development of machine learning in the field of landslide susceptibility assessment. This study constructs a comprehensive explainable landslide susceptibility assessment model based on the SHAP-XGBoost algorithm, introducing “Explainable Artificial Intelligence (XAI)” and “Automated Machine Learning (AutoML)” into landslide susceptibility assessment research, achieving automated operation of complex model training, hyperparameter optimization, landslide susceptibility assessment mapping, and model explanation. The results of testing in the Fengjie County of the Three Gorges Reservoir Area at two scales, grid units, and slope units, demonstrate explainable automated landslide susceptibility assessment with high predictive accuracy. The model based on grid and slope units achieves AUC values of 0.875 and 0.873, respectively, with accuracy, precision, recall, and F1 scores all significantly higher than 0.5. The SHAP algorithm provides explanations for the model from both global and local perspectives, aiding in understanding the distribution characteristics of causative factors in model building and the occurrence patterns of landslide disasters. Additionally, the SHAP algorithm can explain the prediction results of individual evaluation units with high credibility. The research results provide important references for the study of automated machine learning and explainable models.

     

/

返回文章
返回