冯林娅, 姚力, 赵小杰. 引入Huber损失函数的睡眠脑电数据增强模型研究[J]. 北京师范大学学报(自然科学版), 2021, 57(6): 875-882. DOI: 10.12202/j.0476-0301.2021202
引用本文: 冯林娅, 姚力, 赵小杰. 引入Huber损失函数的睡眠脑电数据增强模型研究[J]. 北京师范大学学报(自然科学版), 2021, 57(6): 875-882. DOI: 10.12202/j.0476-0301.2021202
FENG Linya, YAO Li, ZHAO Xiaojie. Sleep EEG data augmentation model with Huber loss function[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(6): 875-882. DOI: 10.12202/j.0476-0301.2021202
Citation: FENG Linya, YAO Li, ZHAO Xiaojie. Sleep EEG data augmentation model with Huber loss function[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(6): 875-882. DOI: 10.12202/j.0476-0301.2021202

引入Huber损失函数的睡眠脑电数据增强模型研究

Sleep EEG data augmentation model with Huber loss function

  • 摘要: 针对目前睡眠脑电数据的标记仍以专家评判为主,导致数据标记不足,以及影响睡眠状态自动评估的不同阶段睡眠脑电数据类不平衡等问题,提出了一种基于生成式对抗网络(generative adversarial network,GAN)的数据增强模型,用以扩充不同睡眠阶段的脑电数据.通过引入Huber函数来改进辅助分类器生成式对抗网络(auxiliary classifier GAN,ACGAN)模型的损失函数,解决数据模糊等品质问题.该模型无须对数据进行特征提取,其生成和判别网络都采用一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN),并以一维噪声和类别向量为生成器输入信号.分别采用手写体数字图像数据集与睡眠脑电数据集评估该模型的性能.将改进前的模型与其他损失函数模型进行了对比试验,结果表明改进模型的数据增强效果与睡眠分期效果,从可视化评估到定量评估均优于其他模型.研究结果以期为深度学习引入睡眠脑电分析中提供一种行之有效的方法.

     

    Abstract: Currently, labeling sleep EEG data still relies on personal expertise, leading to rather insufficient labeling. Imbalance among the amount of EEG data in different sleep stages, meanwhile, could affect the accuracy of automatic assessment. We therefore propose a generative adversarial network-based data augmentation model to expand on EEG data in different sleep stages. Specifically, Huber function is introduced to assist loss function of auxiliary classifier generative adversarial network (ACGAN) in improving the quality of blurred data. The proposed model needs no specific feature extraction from EEG data. Further, generative and adversarial networks in the model are composed of 1D convolutional neural networks. One-dimensional noise and vectors representing different classes are used as input signals of the generative component. Two datasets MNIST and sleep stages are adopted to evaluate performance of the model. Other loss functions are compared with the proposed loss function to further test this model. Our experiments show that the proposed model achieves better accuracy in sleep state classification when compared to other models. It is our hope that this new model will inspire other workers to more efficiently introduce deep models into EEG-based sleep stage classification.

     

/

返回文章
返回