• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶动力学粒子的布朗运动

涂展春

涂展春. 高阶动力学粒子的布朗运动[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023187
引用本文: 涂展春. 高阶动力学粒子的布朗运动[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023187
TU Zhanchun. Brownian motion with high-derivative dynamics[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023187
Citation: TU Zhanchun. Brownian motion with high-derivative dynamics[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023187

高阶动力学粒子的布朗运动

doi: 10.12202/j.0476-0301.2023187

Brownian motion with high-derivative dynamics

  • 摘要: 讨论了与谐振子热浴耦合的高阶动力学粒子的运动行为,导出了含高阶动力学的朗之万方程及其对应的福克-普朗克方程.

     

  • [1] Ostrogradsky M V. Mémoires sur les équations différentielles relatives au problème des isopèrimétres [J],Mémoires Académie Saint-Pétersbourg 1850,6:385
    [2] Abraham M. Theorie der Elektrizität:Elektromagnetische Theorie der Strahlung [M]. Berlin:Teubner,1905
    [3] DIRAC P A. Classical theory of radiating electrons[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1938,167(929):148
    [4] BHABHA H J. Classical theory of mesons[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1939,172(950):384
    [5] 张宗燧. 質点的經典运动[J]. 北京师范大学学报(自然科学版),1956(1):1
    [6] PAIS A,UHLENBECK G E. On field theories with non-localized action[J]. Physical Review,1950,79(1):145 doi: 10.1103/PhysRev.79.145
    [7] 张宗燧. 含有高次微商的量子理论[J]. 物理学报,1958,14(4):300 doi: 10.7498/aps.14.300
    [8] PODOLSKY B. A generalized electrodynamics part I−non-quantum[J]. Physical Review,1942,62(1/2):68
    [9] PODOLSKY B,KIKUCHI C. A generalized electrodynamics part Ⅱ−quantum[J]. Physical Review,1944,65(7/8):228
    [10] POLYAKOV A. Fine structure of strings[J]. Nuclear Physics B,1986,268(2):406 doi: 10.1016/0550-3213(86)90162-8
    [11] STELLE K S. Classical gravity with higher derivatives[J]. General Relativity and Gravitation,1978,9(4):353 doi: 10.1007/BF00760427
    [12] SIMON J Z. Stability of flat space,semiclassical gravity,and higher derivatives[J]. Physical Review D,1991,43(10):3308 doi: 10.1103/PhysRevD.43.3308
    [13] HAWKING S W,HERTOG T. Living with ghosts[J]. Physical Review D,2002,65(10):103515 doi: 10.1103/PhysRevD.65.103515
    [14] MANNHEIM P D. Alternatives to dark matter and dark energy[J]. Progress in Particle and Nuclear Physics,2006,56(2):340 doi: 10.1016/j.ppnp.2005.08.001
    [15] TIMOSHENKO S P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1921,41(245):744 doi: 10.1080/14786442108636264
    [16] BENDER C M,MANNHEIM P D. No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model[J]. Physical Review Letters,2008,100(11):110402 doi: 10.1103/PhysRevLett.100.110402
    [17] BENDER C M,MANNHEIM P D. Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart[J]. Physical Review D,2008,78(2):025022 doi: 10.1103/PhysRevD.78.025022
    [18] DE MEDEIROS W P F,MÜLLER D. On the order reduction[J]. The European Physical Journal C,2021,81(3):231 doi: 10.1140/epjc/s10052-021-09020-z
    [19] Langevin,P. Sur la théorie du mouvement Brownian[J]. Comptes Rendus de l'Académie des Sciences,1908,146(3):530
    [20] ZWANZIG R. Nonlinear generalized Langevin equations[J]. Journal of Statistical Physics,1973,9(3):215 doi: 10.1007/BF01008729
    [21] FORD G W,KAC M,MAZUR P. Statistical mechanics of assemblies of coupled oscillators[J]. Journal of Mathematical Physics,1965,6(4):504 doi: 10.1063/1.1704304
    [22] 包景东. 经典和量子耗散系统的随机模拟方法[M]. 北京:科学出版社,2009
    [23] REICHL L E. A modern course in statistical physics[M]. Array New York:John Wiley,1998
    [24] NESTERENKO V V. Instability of classical dynamics in theories with higher derivatives[J]. Physical Review D,2007,75(8):087703 doi: 10.1103/PhysRevD.75.087703
    [25] URENDA-CÁZARES E,ESPINOZA P B,GALLEGOS A,et al. The noisy Pais-Uhlenbeck oscillator[J]. Journal of Mathematical Chemistry,2019,57(5):1314 doi: 10.1007/s10910-018-0966-6
    [26] SEKIMOTO K. Stochastic energetics[M]. Berlin:Springer,2010
    [27] SEIFERT U. Stochastic thermodynamics,fluctuation theorems and molecular machines[J]. Reports on Progress in Physics,2012,75(12):126001 doi: 10.1088/0034-4885/75/12/126001
    [28] LI G,TU Z C. Stochastic thermodynamics with odd controlling parameters[J]. Physical Review E,2019,100:012127
    [29] KLEINERT H. Path integral for second-derivative Lagrangian L = (κ/2) ẍ2+( m/2) ẋ2+( k/2) x2– j(τ) x(τ)[J]. Journal of Mathematical Physics,1986,27(12):3003 doi: 10.1063/1.527228
    [30] DEAN D S,MIAO B,PODGORNIK R. Path integrals for higher derivative actions[J]. Journal of Physics A:Mathematical and Theoretical,2019,52(50):505003 doi: 10.1088/1751-8121/ab54df
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  10
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 录用日期:  2023-03-01
  • 网络出版日期:  2023-11-18

目录

    /

    返回文章
    返回