• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂棋盘晶格中的d波超导配对对称性

潘月 马润宇 马天星

潘月, 马润宇, 马天星. 掺杂棋盘晶格中的d波超导配对对称性[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023188
引用本文: 潘月, 马润宇, 马天星. 掺杂棋盘晶格中的d波超导配对对称性[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023188
PAN Yue, MA Runyu, MA Tianxing. D-wave superconducting pairing symmetry in doped checkerboard lattice[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023188
Citation: PAN Yue, MA Runyu, MA Tianxing. D-wave superconducting pairing symmetry in doped checkerboard lattice[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023188

掺杂棋盘晶格中的d波超导配对对称性

doi: 10.12202/j.0476-0301.2023188
基金项目: 国家自然科学基金资助项目(11974049)
详细信息
  • 中图分类号: O469

D-wave superconducting pairing symmetry in doped checkerboard lattice

More Information
  • 摘要: 如何理解棋盘晶格中的强关联电子现象是一个值得深入研究的问题.在阻挫系统中,量子蒙特卡罗模拟通常会遇到符号问题.我们采用约束路径量子蒙特卡罗方法,有效地避开符号问题,研究了定义在掺杂棋盘晶格Hubbard模型中的超导配对关联.我们发现$ d $波对称性的超导配对关联函数优于其他对称性,$ d $波配对关联函数随着次近邻跃迁强度$ {t}' $的减小而增大,随着库仑相互作用的增加而增大.研究结果为进一步理解超导体中的关联效应及其超导配对机制提供了有价值的参考,也为理解阻挫和超导的关系提供了思路.

     

  • 图  1  棋盘晶格结构示意

    图  2  在晶格尺寸$ L=12 $,库仑相互作用$ U=4.0 $,电子浓度$ \langle n\rangle =0.875 $情况下,(a) $ {t}'=0.50 $、(b) $ {t}'=0.75 $、(c) $ {t}'=1.00 $和(d) $ {t}'=1.20 $,不同的次近邻跃迁强度$ t' $的配对关联函数 $ {C}_{\alpha } $ 随距离$ \mathrm{r}/\mathrm{a} $的变化关系.

    图  3  在晶格尺寸 $ L=12 $, 库仑相互作用 $ U=4.0 $ ,电子浓度 $ \langle n\rangle =0.875 $的情况下, (a)为不同的次近邻跃迁强度$ t' $的对$ d $波配对关联函数 $ {C}_{\alpha } $ 随距离$ \mathrm{r}/\mathrm{a} $的变化关系,$ t'=\mathrm{0.50,0.75,1.00,1.20,1.50} $, (b)图为vertex函数随距离$ \mathrm{r}/\mathrm{a} $的变化关系.

    图  4  在晶格尺寸 $ L=12 $, 次近邻跃迁强度 $ t'=1.50 $,电子浓度 $ \langle n\rangle =0.875 $的情况下, 不同的库仑相互作用$ U$ = 3.0, 4.0, 5.0, 6.0,(a)图为d波配对关联函数 $ {C}_{\alpha } $ 随距离$ \mathrm{r}/\mathrm{a} $的变化关系, (b)图为vertex函数随距离$ \mathrm{r}/\mathrm{a} $的变化关系.

    图  5  库仑相互作用 $ U=4.0 $, 次近邻跃迁强度 $ t'=1.00 $,的情况下,晶格尺寸$ L $对配对关联函数 $ {C}_{\alpha } $ 随距离的变化关系,(a) 晶格尺寸 $ L=14 $,电子浓度 $ \langle n\rangle =0.908 $,(b) 晶格尺寸 $ L=16 $,电子浓度 $ \langle n\rangle =0.930 $

  • [1] RAMIREZ A P. Geometric frustration:magic moments[J]. Nature,2003,421(6922):483 doi: 10.1038/421483a
    [2] KING A D,NISOLI C,DAHL E D,et al. Qubit spin ice[J]. Science,2021,373(6554):576 doi: 10.1126/science.abe2824
    [3] SWAIN N,TIWARI R,MAJUMDAR P. Mott-Hubbard transition and spin-liquid state on the pyrochlore lattice[J]. Physical Review B,2016,94(15):155119 doi: 10.1103/PhysRevB.94.155119
    [4] BERG E,ALTMAN E,AUERBACH A. Singlet excitations in pyrochlore:a study of quantum frustration[J]. Physical Review Letters,2003,90(14):147204 doi: 10.1103/PhysRevLett.90.147204
    [5] CAPPONI S. Numerical study of magnetization plateaus in the spin-12 Heisenberg antiferromagnet on the checkerboard lattice[J]. Physical Review B,2017,95:014420 doi: 10.1103/PhysRevB.95.014420
    [6] KHATAMI E,RIGOL M. Thermodynamics of the antiferromagnetic Heisenberg model on the checkerboard lattice[J]. Physical Review B,2011,83(13):134431 doi: 10.1103/PhysRevB.83.134431
    [7] YOSHIOKA T,KOGA A,KAWAKAMI N. Frustration effects in an anisotropic checkerboard lattice Hubbard model[J]. Physical Review B,2008,78(16):165113 doi: 10.1103/PhysRevB.78.165113
    [8] YOSHIOKA T,KOGA A,KAWAKAMI N. Mott transition in the Hubbard model on checkerboard lattice[J]. Journal of the Physical Society of Japan,2008,77(10):104702 doi: 10.1143/JPSJ.77.104702
    [9] YAO H,TSAI W F,KIVELSON S A. Myriad phases of the checkerboard Hubbard model[J]. Physical Review B,2007,76(16):161104 doi: 10.1103/PhysRevB.76.161104
    [10] PALSTRA T T M,MENOVSKY A A,VAN DEN BERG J,et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2[J]. Physical Review Letters,1985,55(24):2727 doi: 10.1103/PhysRevLett.55.2727
    [11] SHUANG,QIAO. Fingerprint of checkerboard antiferromagnetic order in FeSe monolayer due to magnetic-electric correlation[J]. Materials Today,2020,41:44 doi: 10.1016/j.mattod.2020.07.005
    [12] AYRES J,BERBEN M,ČULO M,et al. Incoherent transport across the strange-metal regime of overdoped cuprates[J]. Nature,2021,595(7869):661 doi: 10.1038/s41586-021-03622-z
    [13] HÉBERT C D,SÉMON P,TREMBLAY A M S. Superconducting dome in doped quasi-two-dimensional organic Mott insulators:a paradigm for strongly correlated superconductivity[J]. Physical Review B,2015,92(19):195112 doi: 10.1103/PhysRevB.92.195112
    [14] HANAWA M,MURAOKA Y,TAYAMA T,et al. Superconductivity at 1 K in Cd2Re2O7[J]. Physical Review Letters,2001,87(18):187001 doi: 10.1103/PhysRevLett.87.187001
    [15] KAPCIA K J,REEDYK M,HAJIALAMDARI M,et al. Discovery of a low-temperature orthorhombic phase of the Cd2Re2O7 superconductor[J]. Physical Review Research,2020,2(3):033108 doi: 10.1103/PhysRevResearch.2.033108
    [16] JIN K,HE G,ZHANG X,et al. Anomalous magnetoresistance in the spinel superconductor LiTi2O4[J]. Nature Communications,2015,6:7183 doi: 10.1038/ncomms8183
    [17] KODA A,HIGEMOTO W,OHISHI K,et al. Possible anisotropic order parameter in pyrochlore superconductor KOs2O6 probed by muon spin rotation[J]. Journal of the Physical Society of Japan,2005,74(6):1678 doi: 10.1143/JPSJ.74.1678
    [18] YAJIMA T,SOMA T,YOSHIMATSU K,et al. Heavy-fermion metallic state and Mott transition induced by Li-ion intercalation in LiV2O4 epitaxial films[J]. Physical Review B,2021,104(24):245104 doi: 10.1103/PhysRevB.104.245104
    [19] LU H Y,SUR S,GONG S S,et al. Interaction-driven quantum anomalous Hall insulator in a Dirac semimetal[J]. Physical Review B,2022,106(20):205105 doi: 10.1103/PhysRevB.106.205105
    [20] WU Y Z,FANG S C,LIU G K,et al. Possible cluster pairing correlation in the checkerboard Hubbard model:a quantum Monte Carlo study[J]. Journal of Physics: Condensed Matter,2019,31(37):375601 doi: 10.1088/1361-648X/ab25cc
    [21] SANTOS E G,IGLESIAS J R,LACROIX C,et al. A two-band model for superconductivity in the checkerboard lattice[J]. Journal of Physics:Condensed Matter,2010,22(21):215701 doi: 10.1088/0953-8984/22/21/215701
    [22] WOLF S,DI SANTE D,SCHWEMMER T,et al. Triplet superconductivity from nonlocal coulomb repulsion in an atomic Sn layer deposited onto a Si(111) substrate[J]. Physical Review Letters,2022,128(16):167002 doi: 10.1103/PhysRevLett.128.167002
    [23] ESCHRIG M. Spin-polarized supercurrents for spintronics:a review of current progress[J]. Reports on Progress in Physics Physical Society (Great Britain),2015,78(10):104501
    [24] LINDER J,ROBINSON J W A. Superconducting spintronics[J]. Nature Physics,2015,11(4):307 doi: 10.1038/nphys3242
    [25] HUANG H X,LI Y Q,GAN J Y,et al. Unconventional superconducting symmetry in a checkerboard antiferromagnet studied via renormalized mean-field theory[J]. Physical Review B,2007,75(18):184523 doi: 10.1103/PhysRevB.75.184523
    [26] LÄUCHLI A,POILBLANC D. Spin-charge separation in two-dimensional frustrated quantum magnets[J]. Physical Review Letters,2004,92(23):236404 doi: 10.1103/PhysRevLett.92.236404
    [27] POILBLANC D. Enhanced pairing in doped quantum magnets with frustrated hole motion[J]. Physical Review Letters,2004,93(19):197204 doi: 10.1103/PhysRevLett.93.197204
    [28] BLANKENBECLER R,SCALAPINO D J,SUGAR R L. Monte Carlo calculations of coupled boson-fermion systems. I[J]. Physical Review D,1981,24(8):2278 doi: 10.1103/PhysRevD.24.2278
    [29] ZHANG S W,CARLSON J,GUBERNATIS J E. Constrained path quantum Monte Carlo method for fermion ground states[J]. Physical Review Letters,1995,74(18):3652 doi: 10.1103/PhysRevLett.74.3652
  • 加载中
图(5)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 录用日期:  2023-03-07
  • 网络出版日期:  2023-11-18

目录

    /

    返回文章
    返回