[1] |
RAMIREZ A P. Geometric frustration:magic moments[J]. Nature,2003,421(6922):483 doi: 10.1038/421483a
|
[2] |
KING A D,NISOLI C,DAHL E D,et al. Qubit spin ice[J]. Science,2021,373(6554):576 doi: 10.1126/science.abe2824
|
[3] |
SWAIN N,TIWARI R,MAJUMDAR P. Mott-Hubbard transition and spin-liquid state on the pyrochlore lattice[J]. Physical Review B,2016,94(15):155119 doi: 10.1103/PhysRevB.94.155119
|
[4] |
BERG E,ALTMAN E,AUERBACH A. Singlet excitations in pyrochlore:a study of quantum frustration[J]. Physical Review Letters,2003,90(14):147204 doi: 10.1103/PhysRevLett.90.147204
|
[5] |
CAPPONI S. Numerical study of magnetization plateaus in the spin-12 Heisenberg antiferromagnet on the checkerboard lattice[J]. Physical Review B,2017,95:014420 doi: 10.1103/PhysRevB.95.014420
|
[6] |
KHATAMI E,RIGOL M. Thermodynamics of the antiferromagnetic Heisenberg model on the checkerboard lattice[J]. Physical Review B,2011,83(13):134431 doi: 10.1103/PhysRevB.83.134431
|
[7] |
YOSHIOKA T,KOGA A,KAWAKAMI N. Frustration effects in an anisotropic checkerboard lattice Hubbard model[J]. Physical Review B,2008,78(16):165113 doi: 10.1103/PhysRevB.78.165113
|
[8] |
YOSHIOKA T,KOGA A,KAWAKAMI N. Mott transition in the Hubbard model on checkerboard lattice[J]. Journal of the Physical Society of Japan,2008,77(10):104702 doi: 10.1143/JPSJ.77.104702
|
[9] |
YAO H,TSAI W F,KIVELSON S A. Myriad phases of the checkerboard Hubbard model[J]. Physical Review B,2007,76(16):161104 doi: 10.1103/PhysRevB.76.161104
|
[10] |
PALSTRA T T M,MENOVSKY A A,VAN DEN BERG J,et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2[J]. Physical Review Letters,1985,55(24):2727 doi: 10.1103/PhysRevLett.55.2727
|
[11] |
SHUANG,QIAO. Fingerprint of checkerboard antiferromagnetic order in FeSe monolayer due to magnetic-electric correlation[J]. Materials Today,2020,41:44 doi: 10.1016/j.mattod.2020.07.005
|
[12] |
AYRES J,BERBEN M,ČULO M,et al. Incoherent transport across the strange-metal regime of overdoped cuprates[J]. Nature,2021,595(7869):661 doi: 10.1038/s41586-021-03622-z
|
[13] |
HÉBERT C D,SÉMON P,TREMBLAY A M S. Superconducting dome in doped quasi-two-dimensional organic Mott insulators:a paradigm for strongly correlated superconductivity[J]. Physical Review B,2015,92(19):195112 doi: 10.1103/PhysRevB.92.195112
|
[14] |
HANAWA M,MURAOKA Y,TAYAMA T,et al. Superconductivity at 1 K in Cd2Re2O7[J]. Physical Review Letters,2001,87(18):187001 doi: 10.1103/PhysRevLett.87.187001
|
[15] |
KAPCIA K J,REEDYK M,HAJIALAMDARI M,et al. Discovery of a low-temperature orthorhombic phase of the Cd2Re2O7 superconductor[J]. Physical Review Research,2020,2(3):033108 doi: 10.1103/PhysRevResearch.2.033108
|
[16] |
JIN K,HE G,ZHANG X,et al. Anomalous magnetoresistance in the spinel superconductor LiTi2O4[J]. Nature Communications,2015,6:7183 doi: 10.1038/ncomms8183
|
[17] |
KODA A,HIGEMOTO W,OHISHI K,et al. Possible anisotropic order parameter in pyrochlore superconductor KOs2O6 probed by muon spin rotation[J]. Journal of the Physical Society of Japan,2005,74(6):1678 doi: 10.1143/JPSJ.74.1678
|
[18] |
YAJIMA T,SOMA T,YOSHIMATSU K,et al. Heavy-fermion metallic state and Mott transition induced by Li-ion intercalation in LiV2O4 epitaxial films[J]. Physical Review B,2021,104(24):245104 doi: 10.1103/PhysRevB.104.245104
|
[19] |
LU H Y,SUR S,GONG S S,et al. Interaction-driven quantum anomalous Hall insulator in a Dirac semimetal[J]. Physical Review B,2022,106(20):205105 doi: 10.1103/PhysRevB.106.205105
|
[20] |
WU Y Z,FANG S C,LIU G K,et al. Possible cluster pairing correlation in the checkerboard Hubbard model:a quantum Monte Carlo study[J]. Journal of Physics: Condensed Matter,2019,31(37):375601 doi: 10.1088/1361-648X/ab25cc
|
[21] |
SANTOS E G,IGLESIAS J R,LACROIX C,et al. A two-band model for superconductivity in the checkerboard lattice[J]. Journal of Physics:Condensed Matter,2010,22(21):215701 doi: 10.1088/0953-8984/22/21/215701
|
[22] |
WOLF S,DI SANTE D,SCHWEMMER T,et al. Triplet superconductivity from nonlocal coulomb repulsion in an atomic Sn layer deposited onto a Si(111) substrate[J]. Physical Review Letters,2022,128(16):167002 doi: 10.1103/PhysRevLett.128.167002
|
[23] |
ESCHRIG M. Spin-polarized supercurrents for spintronics:a review of current progress[J]. Reports on Progress in Physics Physical Society (Great Britain),2015,78(10):104501
|
[24] |
LINDER J,ROBINSON J W A. Superconducting spintronics[J]. Nature Physics,2015,11(4):307 doi: 10.1038/nphys3242
|
[25] |
HUANG H X,LI Y Q,GAN J Y,et al. Unconventional superconducting symmetry in a checkerboard antiferromagnet studied via renormalized mean-field theory[J]. Physical Review B,2007,75(18):184523 doi: 10.1103/PhysRevB.75.184523
|
[26] |
LÄUCHLI A,POILBLANC D. Spin-charge separation in two-dimensional frustrated quantum magnets[J]. Physical Review Letters,2004,92(23):236404 doi: 10.1103/PhysRevLett.92.236404
|
[27] |
POILBLANC D. Enhanced pairing in doped quantum magnets with frustrated hole motion[J]. Physical Review Letters,2004,93(19):197204 doi: 10.1103/PhysRevLett.93.197204
|
[28] |
BLANKENBECLER R,SCALAPINO D J,SUGAR R L. Monte Carlo calculations of coupled boson-fermion systems. I[J]. Physical Review D,1981,24(8):2278 doi: 10.1103/PhysRevD.24.2278
|
[29] |
ZHANG S W,CARLSON J,GUBERNATIS J E. Constrained path quantum Monte Carlo method for fermion ground states[J]. Physical Review Letters,1995,74(18):3652 doi: 10.1103/PhysRevLett.74.3652
|