[1] |
WANG H C,FU T F,DU Y Q,et al. Scientific discovery in the age of artificial intelligence[J]. Nature,2023,620(7972):47 doi: 10.1038/s41586-023-06221-2
|
[2] |
LEIJNEN S,VAN VEEN F. The neural network zoo[J]. Proceedings,2020,47(1):9 doi: 10.3390/proceedings2020047009
|
[3] |
LUKOŠEVIČIUS M,JAEGER H. Reservoir computing approaches to recurrent neural network training[J]. Computer Science Review,2009,3(3):127 doi: 10.1016/j.cosrev.2009.03.005
|
[4] |
ZHANG H,VARGAS D V. A survey on reservoir computing and its interdisciplinary applications beyond traditional machine learning[J]. IEEE Access,2023,11:81033 doi: 10.1109/ACCESS.2023.3299296
|
[5] |
MAASS W,NATSCHLÄGER T,MARKRAM H. Real-time computing without stable states:a new framework for neural computation based on perturbations[J]. Neural Computation,2002,14(11):2531 doi: 10.1162/089976602760407955
|
[6] |
JAEGER H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note[J]. Bonn,Germany:German National Research Center for Information Technology GMD Technical Report,2001,148(34):13.
|
[7] |
VERSTRAETEN D,SCHRAUWEN B,D’HAENE M,et al. An experimental unification of reservoir computing methods[J]. Neural Networks,2007,20(3):391 doi: 10.1016/j.neunet.2007.04.003
|
[8] |
SCHRAUWEN B,VERSTRAETEN D,CAMPENHOUT J V. An overview of reservoir computing:theory,applications and implementations[C]//In Proceedings of the 15th european symposium on artificial neural networks,Bruges,Belgium:Université catholique de Louvain 2007
|
[9] |
CHATTOPADHYAY A,HASSANZADEH P,SUBRAMANIAN D. Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods:reservoir computing,artificial neural network,and long short-term memory network[J]. Nonlinear Processes in Geophysics,2020,27(3):373 doi: 10.5194/npg-27-373-2020
|
[10] |
TANAKA G,YAMANE T,HÉROUX J B,et al. Recent advances in physical reservoir computing:a review[J]. Neural Networks,2019,115:100 doi: 10.1016/j.neunet.2019.03.005
|
[11] |
MANTE V,SUSSILLO D,SHENOY K V,et al. Context-dependent computation by recurrent dynamics in prefrontal cortex[J]. Nature,2013,503(7474):78 doi: 10.1038/nature12742
|
[12] |
BARONE P,JOSEPH J P. Prefrontal cortex and spatial sequencing in macaque monkey[J]. Experimental Brain Research,1989,78(3):447
|
[13] |
RIGOTTI M,BARAK O,WARDEN M R,et al. The importance of mixed selectivity in complex cognitive tasks[J]. Nature,2013,497(7451):585 doi: 10.1038/nature12160
|
[14] |
ENEL P,PROCYK E,QUILODRAN R,et al. Reservoir computing properties of neural dynamics in prefrontal cortex[J]. PLoS Computational Biology,2016,12(6):e1004967 doi: 10.1371/journal.pcbi.1004967
|
[15] |
SUSSILLO D,ABBOTT L F. Generating coherent patterns of activity from chaotic neural networks[J]. Neuron,2009,63(4):544 doi: 10.1016/j.neuron.2009.07.018
|
[16] |
ZHONG S S,XIE X L,LIN L,et al. Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction[J]. Neurocomputing,2017,238:191 doi: 10.1016/j.neucom.2017.01.053
|
[17] |
THIEDE L A,PARLITZ U. Gradient based hyperparameter optimization in echo state networks[J]. Neural Networks,2019,115:23 doi: 10.1016/j.neunet.2019.02.001
|
[18] |
WANG H S,YAN X F. Optimizing the echo state network with a binary particle swarm optimization algorithm[J]. Knowledge-Based Systems,2015,86:182 doi: 10.1016/j.knosys.2015.06.003
|
[19] |
GRIGORYEVA L,ORTEGA J P. Echo state networks are universal[J]. Neural Networks,2018(108):495
|
[20] |
JAEGER H. Tutorial on training recurrent neural networks,covering BPPT,RTRL,EKF and the" echo state network" approach[EB/OL]. 2021 [2023-08-11]. https://api.semanticscholar.org/CorpusID:192593367
|
[21] |
LUKOŠEVIČIUS M. A practical guide to applying echo state networks[M]//Lecture Notes in Computer Science. Berlin,Heidelberg:Springer Berlin Heidelberg,2012:659
|
[22] |
GALLICCHIO C. Chasing the echo state property[EB/OL]. 2018[2023-08-11] https://arxiv.org/abs/1811.10892.pdf
|
[23] |
LIU S Y,XIAO J H,YAN Z X,et al. Noise resistance of next-generation reservoir computing:a comparative study with high-order correlation computation[J]. Nonlinear Dynamics,2023,111(15):14295 doi: 10.1007/s11071-023-08592-7
|
[24] |
SCHRAUWEN B,DEFOUR J,VERSTRAETEN D,et al. The introduction of time-scales in reservoir computing,applied to isolated digits recognition[M]//Lecture Notes in Computer Science. Berlin,Heidelberg:Springer Berlin Heidelberg,2007:471
|
[25] |
LUKOŠEVIČIUS M,JAEGER H,SCHRAUWEN B. Reservoir computing trends[J]. KI-Künstliche Intelligenz,2012,26(4):365
|
[26] |
GRIFFITH A,POMERANCE A,GAUTHIER D J. Forecasting chaotic systems with very low connectivity reservoir computers[J]. Chaos:an Interdisciplinary Journal of Nonlinear Science,2019,29(12):123108. doi: 10.1063/1.5120710
|
[27] |
HALUSZCZYNSKI A,RÄTH C. Good and bad predictions:assessing and improving the replication of chaotic attractors by means of reservoir computing[J]. Chaos:an Interdisciplinary Journal of Nonlinear Science,2019,29(10):103143. doi: 10.1063/1.5118725
|
[28] |
CHITSAZAN M A,SAMI FADALI M,TRZYNADLOWSKI A M. Wind speed and wind direction forecasting using echo state network with nonlinear functions[J]. Renewable Energy,2019,131:879 doi: 10.1016/j.renene.2018.07.060
|
[29] |
WANG S,YANG X J,WEI C J. Harnessing non-linearity by sigmoid-wavelet hybrid echo state networks (SWHESN)[C]//2006 6th World Congress on Intelligent Control and Automation. June 21-23,2006,Dalian,China. IEEE,2006:3014
|
[30] |
DALE M,MILLER J,STEPNEY S,et al. A substrate-independent framework to characterize reservoir computers[J]. Proceedings of the Royal Society A,2019,475(2226):20180723 doi: 10.1098/rspa.2018.0723
|
[31] |
BALA A,ISMAIL I,IBRAHIM R,et al. Applications of metaheuristics in reservoir computing techniques:a review[J]. IEEE Access,2018,6:58012 doi: 10.1109/ACCESS.2018.2873770
|
[32] |
LAN X,CHEN W,GAO J,et al. Dynamical Analysis of Reservoir Computing:From Single to Few Nodes[EB/OL],(2023-03-28) [2023-08-11],中国科技论文在线, http://www.paper.edu.cn/releasepaper/content/202303-327
|
[33] |
JAIDEEP P,BRIAN H,MICHELLE G,et al. Model-free prediction of large spatiotemporally chaotic systems from data:a reservoir computing approach[J]. Physical Review Letters,2018,120(2):024102 doi: 10.1103/PhysRevLett.120.024102
|
[34] |
ZIMMERMANN R S,PARLITZ U. Observing spatio-temporal dynamics of excitable media using reservoir computing[J]. Chaos:an Interdisciplinary Journal of Nonlinear Science,2018,28(4):043118 doi: 10.1063/1.5022276
|
[35] |
FAN H W,JIANG J J,ZHANG C,et al. Long-term prediction of chaotic systems with machine learning[J]. Physical Review Research,2020,2:012080 doi: 10.1103/PhysRevResearch.2.012080
|
[36] |
GAUTHIER D J,BOLLT E,GRIFFITH A,et al. Next generation reservoir computing[J]. Nature Communications,2021,12:5564 doi: 10.1038/s41467-021-25801-2
|
[37] |
PATHAK J,LU Z X,HUNT B R,et al. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data[J]. Chaos,2017,27(12):121102 doi: 10.1063/1.5010300
|
[38] |
FOLLMANN R,ROSA E. Predicting slow and fast neuronal dynamics with machine learning[J]. Chaos,2019,29(11):113119. doi: 10.1063/1.5119723
|
[39] |
KONG L W,FAN H W,GREBOGI C,et al. Machine learning prediction of critical transition and system collapse[J]. Physical Review Research,2021,3:013090 doi: 10.1103/PhysRevResearch.3.013090
|
[40] |
FAN H W,KONG L W,LAI Y C,et al. Anticipating synchronization with machine learning[J]. Physical Review Research,2021,3(2):023237 doi: 10.1103/PhysRevResearch.3.023237
|
[41] |
ZHANG H,FAN H W,WANG L,et al. Learning Hamiltonian dynamics with reservoir computing[J]. Physical Review E,2021,104:024205
|
[42] |
KIM J Z,LU Z X,NOZARI E,et al. Teaching recurrent neural networks to infer global temporal structure from local examples[J]. Nature Machine Intelligence,2021,3(4):316 doi: 10.1038/s42256-021-00321-2
|
[43] |
PIOTR A,MARVYN G,JAËL P,et al. Using a reservoir computer to learn chaotic attractors,with applications to chaos synchronization and cryptography[J]. Physical Review E,2018,98:012215 doi: 10.1103/PhysRevE.98.012215
|
[44] |
WENG T F,YANG H J,GU C G,et al. Synchronization of chaotic systems and their machine-learning models[J]. Physical Review E,2019,99:042203 doi: 10.1103/PhysRevE.99.042203
|
[45] |
GUO Y L,ZHANG H,WANG L A,et al. Transfer learning of chaotic systems[J]. Chaos:an Interdisciplinary Journal of Nonlinear Science,2021,31(1):011104. doi: 10.1063/5.0033870
|
[46] |
KONG L,WENG Y,GLAZ B,et al. Reservoir computing as digital twins for nonlinear dynamical systems[J]. Chaos,2023,33(3):033111. doi: 10.1063/5.0138661
|
[47] |
LU Z X,HUNT B R,OTT E. Attractor reconstruction by machine learning[J]. Chaos:an Interdisciplinary Journal of Nonlinear Science,2018,28(6):061104. doi: 10.1063/1.5039508
|
[48] |
CHEN W,GAO J A,YAN Z X,et al. Proper choice of hyperparameters in reservoir computing of chaotic maps[J]. Journal of Physics A:Mathematical and Theoretical,2023,56(41):415702 doi: 10.1088/1751-8121/acfb54
|
[49] |
LEGENSTEIN R,MAASS W. Edge of chaos and prediction of computational performance for neural circuit models[J]. Neural Networks,2007,20(3):323 doi: 10.1016/j.neunet.2007.04.017
|
[50] |
YILDIZ I B,JAEGER H,KIEBEL S J. Re-visiting the echo state property[J]. Neural Networks,2012,35:1 doi: 10.1016/j.neunet.2012.07.005
|
[51] |
WANG L A,FAN H W,XIAO J H,et al. Criticality in reservoir computer of coupled phase oscillators[J]. Physical Review E,2022,105(5):L052201 doi: 10.1103/PhysRevE.105.L052201
|