• 卓越行动计划二期中文领军期刊
  • 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊
YANG Xiyang, YU Fusheng. Time series granulation and forecasting based on k-plane clustering[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 751-762. DOI: 10.12202/j.0476-0301.2019241
Citation: YANG Xiyang, YU Fusheng. Time series granulation and forecasting based on k-plane clustering[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 751-762. DOI: 10.12202/j.0476-0301.2019241

Time series granulation and forecasting based on k-plane clustering

More Information
  • Received Date: September 09, 2019
  • Available Online: July 21, 2020
  • A special k-plane algorithm to cluster all data in a time series into a number of time windows of unequal-length in both time and numerical domains is designed here.In each time window, a linear fuzzy information granule is established, then piecewise linear granulation representation of original time series is obtained.We introduce a distance measure for two linear information granules of unequal size to construct prediction of granular time series based on fuzzy inference.The proposed forecasting could complete long-term prediction for time series with pseudo-period.
  • [1]
    JILANI T A,BURNEY S M A. M-Factor high order fuzzy time series forecasting for road accident data[J]. Advances in Soft Computing,2007,41:246
    [2]
    安海岗,都沁军,张永礼. 基于复杂网络的时间序列单变量波动幅度研究[J]. 系统科学与数学,2015,35(2):158
    [3]
    LIN J, KEOGH E J, LONARDI S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]// Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery. San Diego, California: Association for Computing Machinery, 2003
    [4]
    WEI L,CHEN X,PEDRYCZ W,et al. Using interval information granules to improve forecasting in fuzzy time series[J]. International Journal of Approximate Reasoning,2015,57:1 doi: 10.1016/j.ijar.2014.11.002
    [5]
    陈鹏,胡啸峰,陈建国. 基于模糊信息粒化的支持向量机在犯罪时序预测中的应用[J]. 科学技术与工程,2015,15(35):54 doi: 10.3969/j.issn.1671-1815.2015.35.010
    [6]
    LU W,PEDRYCZ W,LIU X,et al. The modeling of time series based on fuzzy information granules[J]. Expert Systems with Applications,2014,41(8):3799 doi: 10.1016/j.eswa.2013.12.005
    [7]
    KANEIWA K,KUDO Y. A sequential pattern mining algorithm using rough set theory[J]. International Journal of Approximate Reasoning,2011,52(6):881 doi: 10.1016/j.ijar.2011.03.002
    [8]
    YAO J T,HERBERT J P. Financial time-series analysis with rough sets[J]. Applied Soft Computing Journal,2009,9(3):1000 doi: 10.1016/j.asoc.2009.01.003
    [9]
    PEDRYCZ W,VUKOVICH G. Abstraction and specialization of information granules[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part B: Cybernetics,2001,31:106 doi: 10.1109/3477.907568
    [10]
    ZHANG J,PAN Q,PENG Z,et al. Similarity Measuring Method in Time Series Based on Slope[J]. Pattern Recognition and Artificial Intelligence,2007,20(2):271
    [11]
    SUN Y,LI J,LIU J,et al. An improvement of symbolic aggregate approximation distance measure for time series[J]. Neurocomputing,2014,138:189 doi: 10.1016/j.neucom.2014.01.045
    [12]
    KRAWCZAK M,SZKATULA G. An approach to dimensionality reduction in time series[J]. Information Sciences,2014,260(1):15
    [13]
    YANG X Y,YU F SH,PEDRYCZ W. Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system[J]. International Journal of Approximate Reasoning,2017,81:1 doi: 10.1016/j.ijar.2016.10.010
    [14]
    LUO C, TAN C, ZHENG Y. Long-term prediction of time series based on stepwise linear division algorithm and time-variant zonary fuzzy information granules[J]. International Journal of Approximate Reasoning, 2019, 108(38): 61
    [15]
    LIU S,PEDRYCZ W,GACEK A,et al. Development of information granules of higher type and their applications to granular models of time series[J]. Engineering Applications of Artificial Intelligence,2018,71:60 doi: 10.1016/j.engappai.2018.02.012
    [16]
    CHEN S,CHUNG N. Forecasting enrollments using high-order fuzzy time series and genetic algorithms[J]. International Journal of Intelligent Systems,2006,21(5):485 doi: 10.1002/int.20145
    [17]
    CHEN S,JIAN W. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups,similarity measures and PSO techniques[J]. Information Sciences,2016,391/392:65
    [18]
    BAI J,LIU H. Multi-objective artificial bee algorithm based on decomposition by PBI method[J]. Applied Intelligence,2016,45(4):976 doi: 10.1007/s10489-016-0787-x
    [19]
    王颖,陈松灿,张道强,等. 模糊k-平面聚类算法[J]. 模式识别与人工智能,2007,20(5):704 doi: 10.3969/j.issn.1003-6059.2007.05.020
    [20]
    杨昔阳,周玉玲,李志伟. 一种基于二型模糊集的模糊k-平面聚类算法[J]. 福建师范大学学报(自然科学版),2018,34(6):17
    [21]
    BRADLEY P,MANGASARIAN O. K-plane clustering[J]. Journal of Global Optimization,2000,16(1):23 doi: 10.1023/A:1008324625522
    [22]
    DUAN L,YU F,PEDRYCZ W,et al. Time-series clustering based on linear fuzzy information granules[J]. Applied Soft Computing,2018,73:1053 doi: 10.1016/j.asoc.2018.09.032
    [23]
    [24]

Catalog

    Article Metrics

    Article views (484) PDF downloads (47) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return