Citation: | DING Zhidan, SUN Yujun, SUN Zhao. Estimation of tree biomass with GF-2[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(1): 135-141. DOI: 10.12202/j.0476-0301.2020440 |
[1] |
邹文涛,陈绍志,赵荣. 森林生态系统碳储量及碳通量遥感监测研究进展[J]. 世界林业研究,2017,30(5):1
|
[2] |
BROWN S. Estimating biomass and biomass change of tropical forests:a primer[J]. Fao Forestry Paper,1997,18:45
|
[3] |
薛巍,张秋良,赵鹏翔,等. 基于遥感技术的森林生物量估算应用[J]. 水土保持研究,2009,16(2):209
|
[4] |
SCOTT G,RALPH D. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change[J]. Carbon Management,2011,2(3):231 doi: 10.4155/cmt.11.18
|
[5] |
李德仁,王长委,胡月明,等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报(信息科学版),2012,37(6):631
|
[6] |
SUN W Y,MU X M,SONG X Y,et al. Changes in extreme temperature and precipitation events in the Loess Plateau(China)during 1960-2013 under global warming[J]. Atmospheric Research,2016,168:33 doi: 10.1016/j.atmosres.2015.09.001
|
[7] |
曾晶,张晓丽. 高分一号遥感影像下崂山林场林分生物量反演估算研究[J]. 中南林业科技大学学报,2016,36(1):46
|
[8] |
苟睿坤,陈佳琦,段高辉,等. 基于GF-2的油松人工林地上生物量反演[J]. 应用生态学报,2019,30(12):4031
|
[9] |
徐梦伶,林辉,孙华,等. 3种模型在GF-2影像的生物量估测中的比较[J]. 中南林业科技大学学报,2018,38(1):62
|
[10] |
黄绍霖,徐涵秋,林娜,等. 亚热带地区马尾松林碳储量的遥感估算:以长汀河田盆地为例[J]. 生态学报,2013,33(10):2992
|
[11] |
方精云,刘国华,徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报,1996,16(5):497
|
[12] |
ZHOU Y C,ZHANG Y Q,VAZE J,et al. Improving runoffestimates using remote sensing vegetation data for bushfire impacted catchments[J]. Agricultural& Forest Meteorology,2013,S182/183:332
|
[13] |
徐梦伶. 基于GF-2影像的森林生物量估测研究[D]. 长沙: 中南林业科技大学, 2018
|
[14] |
HASHEMI S A,CHAI M M F,BAYAT S. An analysis of vegetation indices in relation to tree species diversity using by satellite data in the northern forests of Iran[J]. Arabian Journal of Geosciences,2013,6(9):3363 doi: 10.1007/s12517-012-0576-8
|
[15] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988,25(3):295 doi: 10.1016/0034-4257(88)90106-X
|
[16] |
Miura T,Huete A,Yoshioka H. An empirical investigation of cross-sensor relationships of NDVI and red/near -infrared reflectance using EO-1 Hyperion data[J]. Remote Sensing of Environment,2006,100(2):223 doi: 10.1016/j.rse.2005.10.010
|
[17] |
ROUSE J W J R, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]//Third ERTS Symposium.Washington D C: NASA, 1973: 309
|
[18] |
QI J,HUETE A R. Interpretaion of vegetation indices derived from multi-temporal SPOT images[J]. Remote Sensing of Environment,1993,44:89 doi: 10.1016/0034-4257(93)90105-7
|
[19] |
KAUFMAN Y J,TANRE D. Atmospherically resistant vegetation index(ARVI)for EOS-MODIS[J]. IEEE Transactions Transactions on Geoscience& Remote Sensing,1992,30(2):261
|
[20] |
LYON J G,YUAN D,LUNETTA R S,et al. A change detection experiment using vegetation indices[J]. Photogrammetric Engineering and Remote Sensing,1998,64(2):143
|
[21] |
SCHLERF M,ATZBERGER C,HILL J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment,2005,95(2):177 doi: 10.1016/j.rse.2004.12.016
|
[22] |
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969,50(4):663 doi: 10.2307/1936256
|
[23] |
刘丽,匡纲要,等. 图像纹理特征提取方法综述[J]. 中国图像图形学报,2009,14(4):622 doi: 10.11834/jig.20090409
|
[24] |
李粉玲,李京忠,张琦翔,等. DEM提取坡度·坡向算法的对比研究[J]. 安徽农业科学,2008,36(17):7355 doi: 10.3969/j.issn.0517-6611.2008.17.174
|
[25] |
房秀凤,谭炳香,刘清旺,等. 基于纹理信息的森林蓄积量估计[J]. 东北林业大学学报,2017,45(11):21 doi: 10.3969/j.issn.1000-5382.2017.11.005
|
[26] |
孙华,鞠洪波,张怀清,等. 三种回归分析方法在Hyperion影像LAI反演中的比较[J]. 生态学报,2012,32(24):7781
|
[27] |
杨妍婷. 基于高分遥感数据的森林郁闭度估测方法研究[J]. 智能计算机与应用,2019,9(2):67
|
[28] |
陈日东,林什全,潘国英,等. 天堂山林场森林地上生物量及碳储量的遥感估算模型构建[J]. 林业与环境科学,2019,35(3):71
|
[29] |
邹琪. 深圳市植被碳储量遥感估算研究[D]. 南京: 南京林业大学, 2017
|
[30] |
刘兆华,林辉,龙江平,等. 基于高分二号的旺业甸林场蓄积量估测模型研究[J]. 中南林业科技大学学报,2020,40(3):79
|
[1] | FAN Yuanling, ZENG Yan, ZHU Youchen, PAN Mingchen, WANG Jing, TIAN Jie, YANG Zirui, JI Qin. Regional modeling of geographic distribution of field songs breeding in Hubei based on GIS and random forest algorithm[J]. Journal of Beijing Normal University(Natural Science), 2025, 61(3): 418-428. DOI: 10.12202/j.0476-0301.2024263 |
[2] | SHI Hongwei, RAO Haochen, GUO Xu. Some new developments of support vector machine in high dimension[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(2): 319-327. DOI: 10.12202/j.0476-0301.2022314 |
[3] | SUN Na, ZHAO Xiang, MU Baohui, ZHAO Jiacheng, LIU Naijing. Land cover classification combined with fractional vegetation cover[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(6): 917-925. DOI: 10.12202/j.0476-0301.2021224 |
[4] | XIAO Yi, GUO Yahui, LI Mingwei, FU Yongshuo, SUN Feng. Machine learning to predict groundwater quality[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(2): 261-268. DOI: 10.12202/j.0476-0301.2021196 |
[5] | PEI Chuanle, LIAN Yanqing. Spatio-temporal correlation between energy consumption and PM2.5 concentration based on nighttime light images[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(5): 648-657. DOI: 10.12202/j.0476-0301.2020241 |
[6] | LIU Yongping 1) XUGuiqiao 2 ). 一般多元线性问题的指数收敛(s , t ) - 弱易处理性[J]. Journal of Beijing Normal University(Natural Science), 2017, 53(6): 631-634. DOI: 10.16360/j.cnki.jbnuns.2017.06.001 |
[7] | WANG Jianming LIU Xinlu YE Weiping. Toxic gas identification by support vector machine from SAW sensor array measurements[J]. Journal of Beijing Normal University(Natural Science), 2017, 53(2): 159-164. DOI: 10.16360/j.cnki.jbnuns.2017.02.008 |
[8] | SHAO Nianhua SHEN Bing Q IN Shengying DA I Yuping. ESTIMATING EVAPORATION BY USING KPCA SVM MODEL[J]. Journal of Beijing Normal University(Natural Science), 2010, 46(3): 307-310. |
[9] | Zeng Wenyi Li Hongxing Shi Yu. FUZZY LINEAR REGRESSION MODEL(Ⅱ)[J]. Journal of Beijing Normal University(Natural Science), 2006, 42(4): 334-338. |
[10] | Zeng Wenyi Li Hongxing Shi Yu. FUZZY LINEAR REGRESSION MODEL(Ⅰ)[J]. Journal of Beijing Normal University(Natural Science), 2006, 42(2): 120-125. |