• 卓越行动计划二期中文领军期刊
  • 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊
DING Zhidan, SUN Yujun, SUN Zhao. Estimation of tree biomass with GF-2[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(1): 135-141. DOI: 10.12202/j.0476-0301.2020440
Citation: DING Zhidan, SUN Yujun, SUN Zhao. Estimation of tree biomass with GF-2[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(1): 135-141. DOI: 10.12202/j.0476-0301.2020440

Estimation of tree biomass with GF-2

More Information
  • Received Date: September 10, 2020
  • Available Online: March 08, 2021
  • Biomass data from a total of 192 plots (112 pure forests of Chinese fir, 80 pure forests of Pinus massoniana) in Jiangle State Forest Farm in Sanming City, Fujian Province were obtained from field measured sample plot data and second-class survey data of Fujian Province.Two scene GF-2 images from the study area were preprocessed, spectral information, vegetation index, texture features and topographic factors were extracted, factors highly-correlated with the biomass as independent variables were screened out.Biomass models of fir and Pinus massoniana were established from support vector machine, random forest and multiple stepwise regressions.Fitting of the two machine learning models was found to be better than the multiple stepwise regression model.The random forest model showed the highest determination coefficient R2 (0.65 and 0.72 for the 2 plots), and the highest estimation accuracy (65.28% and 76.82%).The mean root square errors in the 3 models for the Chinese fir plot were 64.27, 48.16 and 77.03.The mean root square errors in the three models for the Pinus massoniana plot were 54.79,48.16 and 65.63, with the random forest model showing the lowest value.It is concluded that the random forest model is the most optimal among all three models.
  • [1]
    邹文涛,陈绍志,赵荣. 森林生态系统碳储量及碳通量遥感监测研究进展[J]. 世界林业研究,2017,30(5):1
    [2]
    BROWN S. Estimating biomass and biomass change of tropical forests:a primer[J]. Fao Forestry Paper,1997,18:45
    [3]
    薛巍,张秋良,赵鹏翔,等. 基于遥感技术的森林生物量估算应用[J]. 水土保持研究,2009,16(2):209
    [4]
    SCOTT G,RALPH D. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change[J]. Carbon Management,2011,2(3):231 doi: 10.4155/cmt.11.18
    [5]
    李德仁,王长委,胡月明,等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报(信息科学版),2012,37(6):631
    [6]
    SUN W Y,MU X M,SONG X Y,et al. Changes in extreme temperature and precipitation events in the Loess Plateau(China)during 1960-2013 under global warming[J]. Atmospheric Research,2016,168:33 doi: 10.1016/j.atmosres.2015.09.001
    [7]
    曾晶,张晓丽. 高分一号遥感影像下崂山林场林分生物量反演估算研究[J]. 中南林业科技大学学报,2016,36(1):46
    [8]
    苟睿坤,陈佳琦,段高辉,等. 基于GF-2的油松人工林地上生物量反演[J]. 应用生态学报,2019,30(12):4031
    [9]
    徐梦伶,林辉,孙华,等. 3种模型在GF-2影像的生物量估测中的比较[J]. 中南林业科技大学学报,2018,38(1):62
    [10]
    黄绍霖,徐涵秋,林娜,等. 亚热带地区马尾松林碳储量的遥感估算:以长汀河田盆地为例[J]. 生态学报,2013,33(10):2992
    [11]
    方精云,刘国华,徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报,1996,16(5):497
    [12]
    ZHOU Y C,ZHANG Y Q,VAZE J,et al. Improving runoffestimates using remote sensing vegetation data for bushfire impacted catchments[J]. Agricultural& Forest Meteorology,2013,S182/183:332
    [13]
    徐梦伶. 基于GF-2影像的森林生物量估测研究[D]. 长沙: 中南林业科技大学, 2018
    [14]
    HASHEMI S A,CHAI M M F,BAYAT S. An analysis of vegetation indices in relation to tree species diversity using by satellite data in the northern forests of Iran[J]. Arabian Journal of Geosciences,2013,6(9):3363 doi: 10.1007/s12517-012-0576-8
    [15]
    HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment,1988,25(3):295 doi: 10.1016/0034-4257(88)90106-X
    [16]
    Miura T,Huete A,Yoshioka H. An empirical investigation of cross-sensor relationships of NDVI and red/near -infrared reflectance using EO-1 Hyperion data[J]. Remote Sensing of Environment,2006,100(2):223 doi: 10.1016/j.rse.2005.10.010
    [17]
    ROUSE J W J R, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]//Third ERTS Symposium.Washington D C: NASA, 1973: 309
    [18]
    QI J,HUETE A R. Interpretaion of vegetation indices derived from multi-temporal SPOT images[J]. Remote Sensing of Environment,1993,44:89 doi: 10.1016/0034-4257(93)90105-7
    [19]
    KAUFMAN Y J,TANRE D. Atmospherically resistant vegetation index(ARVI)for EOS-MODIS[J]. IEEE Transactions Transactions on Geoscience& Remote Sensing,1992,30(2):261
    [20]
    LYON J G,YUAN D,LUNETTA R S,et al. A change detection experiment using vegetation indices[J]. Photogrammetric Engineering and Remote Sensing,1998,64(2):143
    [21]
    SCHLERF M,ATZBERGER C,HILL J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment,2005,95(2):177 doi: 10.1016/j.rse.2004.12.016
    [22]
    JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969,50(4):663 doi: 10.2307/1936256
    [23]
    刘丽,匡纲要,等. 图像纹理特征提取方法综述[J]. 中国图像图形学报,2009,14(4):622 doi: 10.11834/jig.20090409
    [24]
    李粉玲,李京忠,张琦翔,等. DEM提取坡度·坡向算法的对比研究[J]. 安徽农业科学,2008,36(17):7355 doi: 10.3969/j.issn.0517-6611.2008.17.174
    [25]
    房秀凤,谭炳香,刘清旺,等. 基于纹理信息的森林蓄积量估计[J]. 东北林业大学学报,2017,45(11):21 doi: 10.3969/j.issn.1000-5382.2017.11.005
    [26]
    孙华,鞠洪波,张怀清,等. 三种回归分析方法在Hyperion影像LAI反演中的比较[J]. 生态学报,2012,32(24):7781
    [27]
    杨妍婷. 基于高分遥感数据的森林郁闭度估测方法研究[J]. 智能计算机与应用,2019,9(2):67
    [28]
    陈日东,林什全,潘国英,等. 天堂山林场森林地上生物量及碳储量的遥感估算模型构建[J]. 林业与环境科学,2019,35(3):71
    [29]
    邹琪. 深圳市植被碳储量遥感估算研究[D]. 南京: 南京林业大学, 2017
    [30]
    刘兆华,林辉,龙江平,等. 基于高分二号的旺业甸林场蓄积量估测模型研究[J]. 中南林业科技大学学报,2020,40(3):79
  • Related Articles

    [1]FAN Yuanling, ZENG Yan, ZHU Youchen, PAN Mingchen, WANG Jing, TIAN Jie, YANG Zirui, JI Qin. Regional modeling of geographic distribution of field songs breeding in Hubei based on GIS and random forest algorithm[J]. Journal of Beijing Normal University(Natural Science), 2025, 61(3): 418-428. DOI: 10.12202/j.0476-0301.2024263
    [2]SHI Hongwei, RAO Haochen, GUO Xu. Some new developments of support vector machine in high dimension[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(2): 319-327. DOI: 10.12202/j.0476-0301.2022314
    [3]SUN Na, ZHAO Xiang, MU Baohui, ZHAO Jiacheng, LIU Naijing. Land cover classification combined with fractional vegetation cover[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(6): 917-925. DOI: 10.12202/j.0476-0301.2021224
    [4]XIAO Yi, GUO Yahui, LI Mingwei, FU Yongshuo, SUN Feng. Machine learning to predict groundwater quality[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(2): 261-268. DOI: 10.12202/j.0476-0301.2021196
    [5]PEI Chuanle, LIAN Yanqing. Spatio-temporal correlation between energy consumption and PM2.5 concentration based on nighttime light images[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(5): 648-657. DOI: 10.12202/j.0476-0301.2020241
    [6]LIU Yongping 1) XUGuiqiao 2 ). 一般多元线性问题的指数收敛(s , t ) - 弱易处理性[J]. Journal of Beijing Normal University(Natural Science), 2017, 53(6): 631-634. DOI: 10.16360/j.cnki.jbnuns.2017.06.001
    [7]WANG Jianming LIU Xinlu YE Weiping. Toxic gas identification by support vector machine from SAW sensor array measurements[J]. Journal of Beijing Normal University(Natural Science), 2017, 53(2): 159-164. DOI: 10.16360/j.cnki.jbnuns.2017.02.008
    [8]SHAO Nianhua SHEN Bing Q IN Shengying DA I Yuping. ESTIMATING EVAPORATION BY USING KPCA SVM MODEL[J]. Journal of Beijing Normal University(Natural Science), 2010, 46(3): 307-310.
    [9]Zeng Wenyi Li Hongxing  Shi Yu. FUZZY LINEAR REGRESSION MODEL(Ⅱ)[J]. Journal of Beijing Normal University(Natural Science), 2006, 42(4): 334-338.
    [10]Zeng Wenyi Li Hongxing  Shi Yu. FUZZY LINEAR REGRESSION MODEL(Ⅰ)[J]. Journal of Beijing Normal University(Natural Science), 2006, 42(2): 120-125.
  • Cited by

    Periodical cited type(8)

    1. 刘世好,胡稳,杨旸谷,阳胜男,徐云,张家阳. 基于随机森林模型的地表细小死可燃物载量估算. 浙江农林大学学报. 2025(02): 312-320 .
    2. SUN Zhao,WANG Yi-fu,DING Zhi-dan,LIANG Rui-ting,XIE Yun-hong,LI Rui,LI Hao-wei,PAN Lei,SUN Yu-jun. Individual tree segmentation and biomass estimation based on UAV Digital aerial photograph. Journal of Mountain Science. 2023(03): 724-737 .
    3. 张岚,宋钰红,张慧琳,王燚. 城市森林碳汇及估算方法比较. 现代园艺. 2023(11): 73-78 .
    4. 盛锋雷,刁军,王柏昌,汤序军. 上海市不同林分型乔木层可燃物载量模型研究. 广西林业科学. 2023(03): 384-393 .
    5. 杨绍钦,王翔,许澄,商天其. 基于MODIS时间序列数据的竹林地上生物量估算. 浙江农林大学学报. 2022(04): 734-741 .
    6. 令狐大智,罗溪,朱帮助. 森林碳汇测算及固碳影响因素研究进展. 广西大学学报(哲学社会科学版). 2022(03): 142-155 .
    7. 张殿岱,王雪梅,昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算. 草业学报. 2021(11): 1-12 .
    8. 吴恒,胥辉. 森林植被碳密度遥感反演和校准研究. 林业资源管理. 2021(06): 43-51 .

    Other cited types(12)

Catalog

    Article Metrics

    Article views (355) PDF downloads (42) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return