Citation: | LI Yuerong, WU Zhongke, WANG Xuesong, SHEN Jiali, WANG Xingce. WGAN for super-resolution megnatic resonance imaging[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(6): 896-904. DOI: 10.12202/j.0476-0301.2021203 |
[1] |
曹辉,王绪本,苟量. 超声、磁共振和核医学成像的发展现状和趋势[J]. 成都理工大学学报(自然科学版),2002,29(2):232
|
[2] |
KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1981,29(6):1153 doi: 10.1109/TASSP.1981.1163711
|
[3] |
YANG J C, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, USA, AK, Anchorage: IEEE, 2008: 1
|
[4] |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, USA, MA, Boston:IEEE, 2015: 5197
|
[5] |
GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//2009 IEEE 12th International Conference on Computer Vision, September 29 -October 2, 2009, Japan, Kyoto:IEEE, 2009: 349
|
[6] |
ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[EB/OL]. (2018-11-26)[2021-04-15].https://phillipi.github.io/pix2pix/
|
[7] |
PARK S C,PARK M K,KANG M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine,2003,20(3):21 doi: 10.1109/MSP.2003.1203207
|
[8] |
DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision(ECCV 2014), Janury 01, 2014, Switzerland, Cham: Springer, 2014: 184
|
[9] |
DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision(ECCV 2016), October 8, 2016, Switzerland, Cham: Springer, 2016: 391
|
[10] |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, USA, NV, Las Vegas:IEEE, 2016: 1874
|
[11] |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, USA, NV, Las Vegas: IEEE, 2016: 1646
|
[12] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, USA, NV, Las Vegas: IEEE, 2016: 770
|
[13] |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C/OL].New York: IEEE, 2017[2021-04-15].https:/C.org/pdf/1707.02921.pdf
|
[14] |
MAO X J, SHEN C H, YANG Y B. Image restoration using convolutional auto-encoders with symmetric skip connections[EB/OL]. arXiv, 2016,16(3):09056[2021-04-15].https://arxiv.org/abs/1606.08921
|
[15] |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26,2017, HI, USA,Honolulu:IEEE, 2017: 105
|
[16] |
WANG X T, YU K, WU S X, et al. Esrgan: enhanced super-resolution generative adversarial networks[EB/OL]. arXiv, 2018,18(2):09056[2021-04-15].https://arxiv.org/abs/1809.00219
|
[17] |
HATVANI J,HORVÁTH A,MICHETTI J,et al. Deep learning-based super-resolution applied to dental computed tomography[J]. IEEE Transactions on Radiation and Plasma Medical Sciences,2018,3(2):120
|
[18] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015),November 18,2015,Switzerland,Cham:Springer, 2015: 234
|
[19] |
LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278 doi: 10.1109/5.726791
|
[20] |
SZEGEDY G, LIU W, JIA Y Q, et al. Going deeper with convolutions[EB/OL]. arXiv, 2014,14(1):4842.https://arxiv.org/abs/1409.4842
|
[21] |
GOODFELLOW I, POUGET-ABADIE, MIRZA M, et al. Generative adversarial nets[EB/OL]. arXiv, 2014,14(1): 2672[2021-04-15].https://arxiv.org/abs/1406.2661
|
[22] |
RAN M S,HU J R,CHEN Y,et al. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network[J]. Medical Image Analysis,2019,55:165 doi: 10.1016/j.media.2019.05.001
|
[23] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv, 2014,14(1):1409[2021-04-15].https://arxiv.org/abs/1409.1556v1
|
[24] |
GATYS L A, ECKER A S, BETHGE M. Texture synthesis using convolutional neural networks[EB/OL]. arXiv, 2015,15(3): 262[2021-04-15].https://arxiv.org/pdf/1505.07376.pdf
|