• 卓越行动计划二期中文领军期刊
  • 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊
LIU Gengyuan, GUO Lisi, CHEN Yu, YAN Ningyu, MENG Fanxin, LI Hui, CHEN Caocao, XIE Tao. Marginal abatement cost analysis of urban carbon neutralization measures: taking Beijing as a case[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(2): 249-259. DOI: 10.12202/j.0476-0301.2022212
Citation: LIU Gengyuan, GUO Lisi, CHEN Yu, YAN Ningyu, MENG Fanxin, LI Hui, CHEN Caocao, XIE Tao. Marginal abatement cost analysis of urban carbon neutralization measures: taking Beijing as a case[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(2): 249-259. DOI: 10.12202/j.0476-0301.2022212

Marginal abatement cost analysis of urban carbon neutralization measures: taking Beijing as a case

More Information
  • Received Date: June 14, 2022
  • Accepted Date: December 26, 2022
  • Available Online: February 28, 2023
  • Cities are the main site to achieve carbon neutrality.Under the carbon neutrality target, more emission reduction technologies and policies will be encouraged, to play a role in the low carbon transformation of cities. In this study the marginal abatement cost method is used to analyze the abatement potential and cost of specific abatement technologies in the context of low-carbon measures promotion in Beijing.The marginal abatement cost curve for Beijing with 35 abatement measures is drawn, and priority abatement measures with high economic efficiency are identified.This study also provides a prioritization of technology measures and implementation paths for Beijing to achieve the goal of carbon neutrality.This study shows the following 3 points.1) The screening of emission reduction technologies for the power sector, transportation sector, and building sector reveals an emission reduction potential of 1 496 million tons, 766 million tons, and 255 million tons, respectively.The average marginal carbon abatement cost is 485.12 yuan·t−1, and the average abatement costs of the power sector, transportation sector and construction sector are 154.56, 417.56 and 688.28 yuan·t−1 respectively.Power abatement measures should be promoted in Beijing to ensure that Beijing’s carbon emissions enter a phase of rapid decline.2) Among the 35 emission reduction measures, the marginal abatement cost of 11 of them is negative; the cost-effective abatement potential is 399.67 million t CO2, accounting for 39.15%.Negative cost measures such as electric cabs, electric buses and electric light trucks, and lighting energy efficiency should be vigorously promoted at the early stage of emission reduction.3) High marginal abatement cost measures have high abatement potential, but the implementation is difficult due to cost barriers.To promote the proliferation of such abatement technologies, the government can adopt a certain degree of subsidies or incentive policies to ensure the stability of abatement investment returns and to reduce the risk of abatement investment.
  • [1]
    MORRIS J,PALTSEV S,REILLY J. Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions:results from the EPPA model[J]. Environmental Modeling & Assessment,2012,17(4):325
    [2]
    Mckinsey Company. Pathways to a low-carbon economy: version 2 of the global greenhouse gas abatement cost curve[R/OL]. 2013[2022-05-13].https://www.mckinsey.com/business-functions/sustainability/our-insights/pathways-to-a-low-carbon-economy
    [3]
    Mckinsey Company. Greenhouse gas abatement cost curves[EB/OL]. 2010 [2022-05-13].https://www.mckinsey.com/business-functions/sustainability/our-insights/greenhouse-gas-abatement-cost-curves
    [4]
    KLEPPER G,PETERSON S. Marginal abatement cost curves in general equilibrium:the influence of world energy prices[J]. Resource and Energy Economics,2006,28(1):1 doi: 10.1016/j.reseneeco.2005.04.001
    [5]
    CHEN W. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy,2005,33(7):885 doi: 10.1016/j.enpol.2003.10.012
    [6]
    JIANG H D,PUROHIT P,LIANG Q M,et al. The cost-benefit comparisons of China’s and India’s NDCs based on carbon marginal abatement cost curves[J]. Energy Economics,2022,109:105946 doi: 10.1016/j.eneco.2022.105946
    [7]
    吴力波,钱浩祺,汤维祺. 基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J]. 经济研究,2014,49(9):48
    [8]
    姚云飞,梁巧梅,魏一鸣. 国际能源价格波动对中国边际减排成本的影响:基于CEEPA模型的分析[J]. 中国软科学,2012(2):156 doi: 10.3969/j.issn.1002-9753.2012.02.018
    [9]
    MARKLUND P O,SAMAKOVLIS E. What is driving the EU burden-sharing agreement:efficiency or equity?[J]. Journal of Environmental Management,2007,85(2):317 doi: 10.1016/j.jenvman.2006.09.017
    [10]
    刘明磊,朱磊,范英. 我国省级碳排放绩效评价及边际减排成本估计:基于非参数距离函数方法[J]. 中国软科学,2011(3):106 doi: 10.3969/j.issn.1002-9753.2011.03.012
    [11]
    陈德湖,潘英超,武春友. 中国二氧化碳的边际减排成本与区域差异研究[J]. 中国人口·资源与环境,2016,26(10):86 doi: 10.3969/j.issn.1002-2104.2016.10.011
    [12]
    魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济,2014,37(7):115
    [13]
    CHENG J,XU L,WANG H,et al. How does the marginal abatement cost of CO2 emissions evolve in Chinese cities? An analysis from the perspective of urban agglomerations[J]. Sustainable Production and Consumption,2022,32:147 doi: 10.1016/j.spc.2022.04.013
    [14]
    XIAN Y,WANG K,WEI Y M,et al. Opportunity and marginal abatement cost savings from China’s pilot carbon emissions permit trading system:simulating evidence from the industrial sectors[J]. Journal of Environmental Management,2020,271:110975 doi: 10.1016/j.jenvman.2020.110975
    [15]
    吴贤荣. 中国农业碳排放边际减排成本:参数法测度与时空分析[J]. 世界农业,2021(1):46
    [16]
    KESICKI F. Marginal abatement cost curves:combining energy system modelling and decomposition analysis[J]. Environmental Modeling & Assessment,2013,18(1):27
    [17]
    PENG B B,XU J H,FAN Y. Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China[J]. Energy Policy,2018,113:306 doi: 10.1016/j.enpol.2017.11.010
    [18]
    HUANG Y H,WU J H. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the cement industry for energy transition:an application of extended marginal abatement cost curves[J]. Journal of Cleaner Production,2021,296:126619 doi: 10.1016/j.jclepro.2021.126619
    [19]
    AMINETZAH D, DENIS N, HENDERSON K, et al. Agriculture and climate change reducing emissions through improved farming practices[R/OL]. 2020 [2022-05-13].https://www.mckinsey.com/industries/agriculture/our-insights/reducing-agriculture-emissions-through-improved-farming-practices
    [20]
    XIAO H,WEI Q P,WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China’s building sector to 2030[J]. Energy Policy,2014,69:92 doi: 10.1016/j.enpol.2014.02.021
    [21]
    MUANGJAI P,WONGSAPAI W,BUNCHUAIDEE R,et al. Estimation of marginal abatement subsidization cost of renewable energy for power generation in Thailand[J]. Energy Reports,2022,8:528
    [22]
    AGUILAR M,SZKLO A,BRANCO D C. Implementation of Maritime Transport Mitigation Measures according to their marginal abatement costs and their mitigation potentials[J]. Energy Policy,2022,160:112699 doi: 10.1016/j.enpol.2021.112699
    [23]
    SCHäFER A W,EVANS A D,REYNOLDS T G,et al. Costs of mitigating CO2 emissions from passenger aircraft[J]. Nature Climate Change,2016,6(4):412 doi: 10.1038/nclimate2865
    [24]
    周丽,陈文颖. 建筑部门典型节能减排技术的成本效益分析[J]. 生态经济,2015,31(8):4 doi: 10.3969/j.issn.1671-4407.2015.08.016
    [25]
    IEA. Projected costs of generating electricity 2020[R/OL]. 2020 [2022-05-13].https://www.iea.org/reports/projected-costs-of-generating-electricity-2020
    [26]
    International Renewable Energy Agency. Renewable power generation costs in 2019[R/OL]. 2020 [2022-05-13].https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019
    [27]
    赵长红,张浩楠,张兴平,等. 集中式天然气发电项目经济性研究[J]. 国际石油经济,2016,24(12):57 doi: 10.3969/j.issn.1004-7298.2016.12.011
    [28]
    JOSHI S,MITTAL S,HOLLOWAY P,et al. High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation[J]. Nature Communications,2021,12:5738 doi: 10.1038/s41467-021-25720-2
    [29]
    董梓童, 姚金楠. 绿电开市!首批交易电量近80亿千瓦时[N/OL]. 中国能源报. (2021-09-08)[2022-05-13]. http://www.cnenergynews.cn/dianli/2021/09/08/detail_20210908106012.html
    [30]
    国家能源局. 2020年度全国可再生能源电力发展监测评价报告[EB/OL]. (2021-06-20)[2022-05-13]. http://zfxxgk.nea.gov.cn/2021-06/20/c_1310039970.htm
    [31]
    国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[A/OL]. (2020-11-02)[2022-10-07]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
    [32]
    交通运输部 国家铁路局 中国民用航空局 国家邮政局贯彻落实《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》的实施意见[A/OL]. (2022-06-24)[2022-10-07].https://xxgk.mot.gov.cn/2020/jigou/zhghs/202206/t20220624_3659984.html
    [33]
    北京市交通发展研究院. 2021年北京市交通发展年度报告[R/OL]. 2021[2022-05-13]. https://www.bjtrc.org.cn/List/index/cid/7.html
    [34]
    交通运输部. 交通运输部关于发布交通运输行业重点节能低碳技术推广目录(2021年度)的公告[EB/OL]. (2021-11-30)[2022-05-13].https://xxgk.mot.gov.cn/2020/jigou/zhghs/202201/t20220121_3637580.html
    [35]
    中国汽车工程学会. 节能与新能源汽车技术路线图2.0[EB/OL]. 2020[2022-05-13]. https://www.sohu.com/a/428528554_362550
    [36]
    New York City Mayor’s Office of Sustainability, Con-Edison, et al. Pathways to carbon-neutral NYC: modernize, reimagine, reach[R/OL]. 2021[2022-05-13]. https://www.nyc.gov/assets/sustainability/downloads/pdf/publications/Carbon-Neutral-NYC.pdf
    [37]
    FERNANDA ROJAS MICHAGA M,MICHAILOS S,AKRAM M,et al. Bioenergy with carbon capture and storage (BECCS) potential in jet fuel production from forestry residues:a combined techno-economic and life cycle assessment approach[J]. Energy Conversion and Management,2022,255:115346 doi: 10.1016/j.enconman.2022.115346
    [38]
    彭彬彬. 乘用车部门节能和碳减排潜力: 基于技术和成本的视角[D]. 北京: 中国科学院大学, 2017
    [39]
    夏楚瑜,马冬,蔡博峰,等. 中国道路交通部门减排技术及成本研究[J]. 环境工程,2021,39(10):50 doi: 10.13205/j.hjgc.202110007
    [40]
    罗雪莹. 分户计量供暖系统的研究与应用[D]. 北京: 北京建筑工程学院, 2011
    [41]
    住房和城乡建设部科技与产业化发展中心. 中国被动式低能耗建筑年度发展研究报告[M]. 北京: 中国建筑工业出版社, 2017
    [42]
    任红. 建筑电气设计中的节能措施[J]. 建筑电气,2008,2:8 doi: 10.3969/j.issn.1003-8493.2008.02.002
    [43]
    江亿,胡珊. 中国建筑部门实现碳中和的路径[J]. 暖通空调,2021,5(51):1
    [44]
    DEETJEN T A,WALSH L,VAISHNAV P. US residential heat pumps:the private economic potential and its emissions,health,and grid impacts[J]. Environmental Research Letters,2021,16(8):084024 doi: 10.1088/1748-9326/ac10dc
    [45]
    陈红兵, 刘玲玲, 李德英. 北京地区既有住宅建筑节能改造与分析[C]//既有建筑综合改造关键技术研究与示范项目交流会论文集. 北京: 中国建筑科学研究院, 2011: 152
    [46]
    江亿. 华北地区大中型城市供暖方式分析[J]. 暖通空调,2000,30(4):30 doi: 10.3969/j.issn.1002-8501.2000.04.009
    [47]
    杨璐,杨秀,刘惠,等. 中国建筑部门二氧化碳减排技术及成本研究[J]. 环境工程,2021,39(10):41 doi: 10.13205/j.hjgc.202110006
    [48]
    International Renewable Energy Agency. Renewable power generation costs in 2020[R/OL]. 2021[2022-05-13]. https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020
    [49]
    秦炎. 市场机制, 欧洲可再生能源大发展的关键[J/OL]. 财经杂志. (2021-02-01)[2022-03-24]. https://finance.sina.com.cn/chanjing/cyxw/2021-02-02/doc-ikftssap2492488.shtml
    [50]
    NYKVIST B,NILSSON M. Rapidly falling costs of battery packs for electric vehicles[J]. Nature Climate Change,2015,5(4):329 doi: 10.1038/nclimate2564
    [51]
    国务院发展研究中心产业经济研究部. 节能与新能源汽车产业发展规划(2012—2020年) [EB/OL]. (2012-06-28)[2022-10-07]. http://www.gov.cn/gongbao/content/2012/content_2182749.htm
    [52]
    BloombergNEF. BloombergNEF’s annual battery price survey finds prices fell 6% from 2020 to 2021[EB/OL]. (2021-11-30)[2022-05-13]. https://about.bnef.com/blog/battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/
  • Cited by

    Periodical cited type(3)

    1. 吴琼,马昊,任洪波,郭明星,陈鹏,李琦芬. 基于LEAP模型的临港新片区中长期碳排放预测及减排潜力分析. 环境科学. 2024(02): 721-731 .
    2. 陈弓,周万利,倪志锋,陈伟民,王丹. 基于边际减排成本的集装箱船碳中和路径和碳价影响分析. 中国航海. 2024(03): 140-147 .
    3. 张诗悦. 光伏发电装备减碳技术的边际减排成本模型研究. 中国能源. 2024(07): 39-48 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (718) PDF downloads (119) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return