Citation: | XU Xiaoqin, WANG Xuqing, WANG Wei, YANG Haibo. Recent progress in high-order rotaxane-branched dendrimers[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(4): 650-661. DOI: 10.12202/j.0476-0301.2022244 |
[1] |
FORGAN R S,SAUVAGE J P,STODDART J F. Chemical topology:complex molecular knots,links,and entanglements[J]. Chemical Reviews,2011,111(9):5434 doi: 10.1021/cr200034u
|
[2] |
ERBAS-CAKMAK S,LEIGH D A,MCTERNAN C T,et al. Artificial molecular machines[J]. Chemical Reviews,2015,115(18):10081 doi: 10.1021/acs.chemrev.5b00146
|
[3] |
LEWANDOWSKI B,DE BO G,WARD J W,et al. Sequence-specific peptide synthesis by an artificial small-molecule machine[J]. Science,2013,339(6116):189 doi: 10.1126/science.1229753
|
[4] |
CHENG C Y,MCGONIGAL P R,SCHNEEBELI S T,et al. An artificial molecular pump[J]. Nature Nanotechnology,2015,10:547 doi: 10.1038/nnano.2015.96
|
[5] |
JIMÉNEZ M C,DIETRICH-BUCHECKER C,SAUVAGE J P. Towards synthetic molecular muscles:contraction and stretching of a linear rotaxane dimer[J]. Angewandte Chemie International Edition,2000,39(18):3284
|
[6] |
QIU Y Y,ZHANG L,PEZZATO C,et al. A molecular dual pump[J]. Journal of the American Chemical Society,2019,141(44):17472 doi: 10.1021/jacs.9b08927
|
[7] |
MENG Z,CHEN C F. A molecular pulley based on a triply interlocked [2]rotaxane[J]. Chemical Communications,2015,51(39):8241 doi: 10.1039/C5CC01301A
|
[8] |
MENG Z,XIANG J F,CHEN C F. Tristable [n]rotaxanes:from molecular shuttle to molecular cable car[J]. Chemical Science,2014,5(4):1520 doi: 10.1039/c3sc53295j
|
[9] |
SAUVAGE J P. From chemical topology to molecular machines (Nobel lecture)[J]. Angewandte Chemie International Edition,2017,56(37):11080 doi: 10.1002/anie.201702992
|
[10] |
STODDART J F. Mechanically interlocked molecules (MIMs):molecular shuttles,switches,and machines (Nobel lecture)[J]. Angewandte Chemie International Edition,2017,56(37):11094 doi: 10.1002/anie.201703216
|
[11] |
XUE M,YANG Y,CHI X D,et al. Development of pseudorotaxanes and rotaxanes:from synthesis to stimuli-responsive motions to applications[J]. Chemical Reviews,2015,115(15):7398 doi: 10.1021/cr5005869
|
[12] |
ZHOU H Y,ZONG Q S,HAN Y,et al. Recent advances in higher order rotaxane architectures[J]. Chemical Communications (Cambridge,England),2020,56(69):9916 doi: 10.1039/D0CC03057K
|
[13] |
LEE J K, KIM K. Rotaxane dendrimers[J]. Topics in Current Chemistry, 2003, 228, 111
|
[14] |
KWAN C S,LEUNG K C F. Development and advancement of rotaxane dendrimers as switchable macromolecular machines[J]. Materials Chemistry Frontiers,2020,4(10):2825 doi: 10.1039/D0QM00368A
|
[15] |
BRUNS C J, STODDART J F. The nature of the mechanical bond[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016
|
[16] |
MICHELS J J, HUSKENS J, REINHOUDT D N. Dendrimer-cyclodextrin assemblies as stabilizers for gold and platinum nanoparticles[J]. Journal of the Chemical Society: Perkin Transactions 2, 2002, 2(1): 102
|
[17] |
LIM Y B,KIM T,LEE J W,et al. Self-assembled ternary complex of cationic dendrimer,cucurbituril,and DNA:noncovalent strategy in developing a gene delivery carrier[J]. Bioconjugate Chemistry,2002,13(6):1181
|
[18] |
ZENG Y,LI Y Y,LI M Y,et al. Enhancement of energy utilization in light-harvesting dendrimers by the pseudorotaxane formation at periphery[J]. Journal of the American Chemical Society,2009,131(25):9100 doi: 10.1021/ja902998g
|
[19] |
KIM S Y,KO Y,LEE J,et al. Toward high-generation rotaxane dendrimers that incorporate a ring component on every branch:noncovalent synthesis of a dendritic[10]pseudorotaxane with 13 molecular components[J]. Chemistry: an Asian Journal,2007,2(6):747 doi: 10.1002/asia.200700043
|
[20] |
WANG W,CHEN L J,WANG X Q,et al. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(18):5597 doi: 10.1073/pnas.1500489112
|
[21] |
WANG X Q,WANG W,LI W J,et al. Dual stimuli-responsive rotaxane-branched dendrimers with reversible dimension modulation[J]. Nature Communications,2018,9:3190 doi: 10.1038/s41467-018-05670-y
|
[22] |
WANG X Q,WANG W,LI W J,et al. Rotaxane-branched dendrimers with aggregation-induced emission behavior[J]. Organic Chemistry Frontiers,2019,6(10):1686 doi: 10.1039/C9QO00308H
|
[23] |
LI W J,HU Z B,XU L,et al. Rotaxane-branched dendrimers with enhanced photosensitization[J]. Journal of the American Chemical Society,2020,142(39):16748 doi: 10.1021/jacs.0c07292
|
[24] |
LI W J,WANG X Q,WANG W,et al. Dynamic artificial light-harvesting systems based on rotaxane dendrimers[J]. Giant,2020,2:100020 doi: 10.1016/j.giant.2020.100020
|
[25] |
OSSWALD F,VOGEL E,SAFAROWSKY O,et al. Rotaxane assemblies with dendritic architecture[J]. Advanced Synthesis & Catalysis,2001,343(3):303
|
[26] |
KWAN C S,ZHAO R D,VAN HOVE M A,et al. Higher-generation type Ⅲ-B rotaxane dendrimers with controlling particle size in three-dimensional molecular switching[J]. Nature Communications,2018,9:497 doi: 10.1038/s41467-018-02902-z
|
[27] |
LI Z Y,LIU G X,XUE W,et al. Construction of hetero[n]rotaxanes by use of polyfunctional rotaxane frameworks[J]. The Journal of Organic Chemistry,2013,78(22):11560 doi: 10.1021/jo402166y
|
[28] |
WANG X Q,LI W J,WANG W,et al. Construction of type Ⅲ-C rotaxane-branched dendrimers and their anion-induced dimension modulation feature[J]. Journal of the American Chemical Society,2019,141(35):13923 doi: 10.1021/jacs.9b06739
|
[29] |
KWAN C S,WANG T,LI M,et al. Type Ⅲ-C rotaxane dendrimers:synthesis,dual size modulation and in vivo evaluation[J]. Chemical Communications (Cambridge,England),2019,55(89):13426 doi: 10.1039/C9CC06200A
|
[30] |
LI W J,WANG X Q,ZHANG D Y,et al. Artificial light-harvesting systems based on AIEgen-branched rotaxane dendrimers for efficient photocatalysis[J]. Angewandte Chemie International Edition,2021,60(34):18761 doi: 10.1002/anie.202106035
|
[31] |
LI W J,JIANG H,WANG X Q,et al. Dynamic rotaxane-branched dendrimers with precisely arranged luminogens for efficient light harvesting[J]. Materials Today Chemistry,2022,24:100874 doi: 10.1016/j.mtchem.2022.100874
|
[32] |
LI W J,WANG W,WANG X Q,et al. Daisy chain dendrimers:integrated mechanically interlocked molecules with stimuli-induced dimension modulation feature[J]. Journal of the American Chemical Society,2020,142(18):8473 doi: 10.1021/jacs.0c02475
|