• 卓越行动计划二期中文领军期刊
  • 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊
WANG Zhipeng, ZHANG Jiang. Causal emergence in complex systems[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 725-733. DOI: 10.12202/j.0476-0301.2023049
Citation: WANG Zhipeng, ZHANG Jiang. Causal emergence in complex systems[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 725-733. DOI: 10.12202/j.0476-0301.2023049

Causal emergence in complex systems

More Information
  • Received Date: April 03, 2023
  • Accepted Date: September 05, 2023
  • Available Online: September 20, 2023
  • Focusing on complex systems: a quantitative description is provided for emergence, causality, and causal emergence.The relationship between causality and emergence is elucidated. Two quantitative methods, coarse-graining and information decomposition, are reviewed for characterizing causal emergence. Two causal emergence identification methods based on information decomposition and neural information compression are presented. Basic principles, advantages, disadvantages, and relevant applications of each method are detailed. The framework of causal emergence is defined based on coarse-graining method, which can be applied to discrete dynamical systems. The use of information decomposition method in solving problems relies on redundant information. The proposed indicators based on information decomposition can identify causal emergence in data and find a sufficient condition. The data-driven neural information compression method is scalable and applicable to continuous dynamical systems. It can automatically extract coarse-grained functions at different levels and construct hierarchical dynamics, and identify causal emergence in different types of dynamical systems. Existing methods are improved and applied to identify more complex systems, automate learning groups, and address challenges in general dynamics of large-scale models and other related problems.
  • [1]
    智韬,司光亚,贺筱媛. 电力关键基础设施网络仿真模型研究[J]. 系统仿真学报,2010,22(11):2732 doi: 10.16182/j.cnki.joss.2010.11.019
    [2]
    叶青. 基于复杂网络理论的轨道交通网络脆弱性分析[J]. 中国安全科学学报,2012,22(2):122 doi: 10.3969/j.issn.1003-3033.2012.02.020
    [3]
    KWAPIEŃ J,DROŻDŻ S. Physical approach to complex systems[J]. Physics Reports,2012,515(3/4):115
    [4]
    王飞跃,史帝夫·兰森. 从人工生命到人工社会:复杂社会系统研究的现状和展望[J]. 复杂系统与复杂性科学,2004,1(1):33 doi: 10.3969/j.issn.1672-3813.2004.01.007
    [5]
    王飞跃. 人工社会、计算实验、平行系统:关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学,2004,1(4):25 doi: 10.3969/j.issn.1672-3813.2004.04.002
    [6]
    彭雁虹,褚启勤,李怀祖. 生命系统理论及其应用综述[J]. 系统工程理论与实践,1997,17(3):35
    [7]
    ANDERSON P W. More is different[J]. Science,1972,177(4047):393 doi: 10.1126/science.177.4047.393
    [8]
    CAMAZINE S,DENEUBOURG J L,FRANKS N R,et al. Self-organization in biological systems[M]. New Jersey:Princeton University Press,2020
    [9]
    苗东升. 论系统思维(六):重在把握系统的整体涌现性[J]. 系统科学学报,2006,14(1):1
    [10]
    方锦清,汪小帆,刘曾荣. 略论复杂性问题和非线性复杂网络系统的研究[J]. 科技导报,2004,22(2):9 doi: 10.3321/j.issn:1000-7857.2004.02.003
    [11]
    MEEHL P E,SELLARS W. The concept of emergence[J]. Minnesota Studies in the Philosophy of Science,1956,1:239
    [12]
    BEDAU M A. Weak emergence[J]. Philosophical Perspectives,1997,11:375
    [13]
    PEPPER S C. Emergence[J]. The Journal of Philosophy,1926,23(9):241 doi: 10.2307/2014779
    [14]
    FROMM J. Types and forms of emergence[EB/OL]. (2005-06-13)[2023-02-15]. https://arxiv.org/abs/nlin/0506028.pdf
    [15]
    PEARL J. Graphs,causality,and structural equation models[J]. Sociological Methods & Research,1998,27(2):226
    [16]
    GRANGER C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica,1969,37(3):424 doi: 10.2307/1912791
    [17]
    NEUBERG L G. Causality:models,reasoning,and inference,by Judea Pearl,Cambridge University Press,2000[J]. Econometric Theory,2003,19:675
    [18]
    HOEL E P,ALBANTAKIS L,TONONI G. Quantifying causal emergence shows that macro can beat micro[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(49):19790
    [19]
    HOEL E. When the map is better than the territory[J]. Entropy,2017,19(5):188 doi: 10.3390/e19050188
    [20]
    ROSAS F E,MEDIANO P A M,JENSEN H J,et al. Reconciling emergences:an information-theoretic approach to identify causal emergence in multivariate data[J]. PLoS Computational Biology,2020,16(12):e1008289 doi: 10.1371/journal.pcbi.1008289
    [21]
    ZHANG J A,LIU K W. Neural information squeezer for causal emergence[J]. Entropy,2022,25(1):26 doi: 10.3390/e25010026
    [22]
    MARSH H W,YEUNG A S. Top-down,bottom-up,and horizontal models:the direction of causality in multidimensional,hierarchical self-concept models[J]. Journal of Personality and Social Psychology,1998,75(2):509 doi: 10.1037/0022-3514.75.2.509
    [23]
    CHVYKOV P,HOEL E. Causal geometry[J]. Entropy,2020,23(1):24 doi: 10.3390/e23010024
    [24]
    VARLEY T,HOEL E. Emergence as the conversion of information:a unifying theory[EB/OL]. (2021-04-27)[2023-02-16].https://arxiv.org/abs/2104.13368.pdf
    [25]
    KLEIN B,HOEL E. The emergence of informative higher scales in complex networks[J]. Complexity,2020,2020:1
    [26]
    GRIEBENOW R,KLEIN B,HOEL E. Finding the right scale of a network:efficient identification of causal emergence through spectral clustering[EB/OL]. (2022-02-16)[2023-02-17]. https://arxiv.org/abs/1908.07565v1
    [27]
    汪小帆,李翔,陈关荣. 复杂网络理论及其应用[M]. 北京:清华大学出版社,2006
    [28]
    MARROW S,MICHAUD E J,HOEL E. Examining the causal structures of deep neural networks using information theory[J]. Entropy,2020,22(12):1429 doi: 10.3390/e22121429
    [29]
    KLEIN B,HOEL E,SWAIN A,et al. Evolution and emergence:higher order information structure in protein interactomes across the tree of life[J]. Integrative Biology,2021,13(12):283 doi: 10.1093/intbio/zyab020
    [30]
    BRENNAN K,ANSHUMAN S,TRAVIS B,et al. Exploring noise,degeneracy and determinism in biological networks with the einet package[J]. Methods in Ecology and Evolution,2022,13(4):799 doi: 10.1111/2041-210X.13805
    [31]
    MEDIANO P A M,ROSAS F E,LUPPI A I,et al. Greater than the parts:a review of the information decomposition approach to causal emergence [EB/OL]. (2022-05-23)[2023-02-17]. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0246
    [32]
    TONONI G,SPORNS O. Measuring information integration[J]. BMC Neuroscience,2003,4:31 doi: 10.1186/1471-2202-4-31
    [33]
    WILLIAMS P L,BEER R D. Nonnegative decomposition of multivariate information[EB/OL]. (2010-04-14)[2023-02-18].https://arxiv.org/abs/1004.2515.pdf
    [34]
    ROSAS F E,MEDIANO P A M,RASSOULI B,et al. An operational information decomposition via synergistic disclosure[J]. Journal of Physics A:Mathematical and Theoretical,2020,53(48):485001 doi: 10.1088/1751-8121/abb723
    [35]
    REICHSTEIN M,CAMPS-VALLS G,STEVENS B,et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature,2019,566(7743):195 doi: 10.1038/s41586-019-0912-1
    [36]
    SENIOR A W,EVANS R,JUMPER J,et al. Improved protein structure prediction using potentials from deep learning[J]. Nature,2020,577(7792):706 doi: 10.1038/s41586-019-1923-7
    [37]
    KEISER M J,SETOLA V,IRWIN J J,et al. Predicting new molecular targets for known drugs[J]. Nature,2009,462(7270):175 doi: 10.1038/nature08506
    [38]
    程乐峰,余涛,张孝顺,等. 机器学习在能源与电力系统领域的应用和展望[J]. 电力系统自动化,2019,43(1):15
    [39]
    张伟伟,朱林阳,刘溢浪,等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报,2019,37(3):444
    [40]
    GLYMOUR C,ZHANG K,SPIRTES P. Review of causal discovery methods based on graphical models[EB/OL]. (2019-06-04)[2023-02-18]. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2021.0246
    [41]
    CASADIEGO J,NITZAN M,HALLERBERG S,et al. Model-free inference of direct network interactions from nonlinear collective dynamics[J]. Nature Communications,2017,8:2192 doi: 10.1038/s41467-017-02288-4
    [42]
    ZHANG Y,GUO Y,ZHANG Z,et al. Universal framework for reconstructing complex networks and node dynamics from discrete or continuous dynamics data[EB/OL]. (2022-09-16)[2023-02-18]. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.034315
    [43]
    GLYMOUR C,ZHANG K,SPIRTES P. Review of causal discovery methods based on graphical models[J]. Frontiers in Genetics,2019,10:524 doi: 10.3389/fgene.2019.00524
    [44]
    蔡瑞初,陈薇,张坤,等. 基于非时序观察数据的因果关系发现综述[J]. 计算机学报,2017,40(6):1470 doi: 10.11897/SP.J.1016.2017.01470
    [45]
    HU H Y,LI S H,WANG L,et al. Machine learning holographic mapping by neural network renormalization group[J]. Physical Review Research,2020,2(2):023369 doi: 10.1103/PhysRevResearch.2.023369
    [46]
    LI S H,WANG L. Neural network renormalization group[J]. Physical Review Letters,2018,121(26):260601 doi: 10.1103/PhysRevLett.121.260601
    [47]
    DINH L,SOHL-DICKSTEIN J,BENGIO S. Density estimation using Real NVP[EB/OL]. (2017-02-27)[2023-02-18].https://arxiv.org/abs/1605.08803
    [48]
    HOEL E,LEVIN M. Emergence of informative higher scales in biological systems:a computational toolkit for optimal prediction and control[J]. Communicative & Integrative Biology,2020,13(1):108
    [49]
    SWAIN A,WILLIAMS S D,DI FELICE L J,et al. Interactions and information:exploring task allocation in ant colonies using network analysis[J]. Animal Behaviour,2022,189:69 doi: 10.1016/j.anbehav.2022.04.015
    [50]
    SCHÖLKOPF B,LOCATELLO F,BAUER S,et al. Toward causal representation learning[J]. Proceedings of the IEEE,2021,109(5):612 doi: 10.1109/JPROC.2021.3058954
    [51]
    IWASAKI Y,SIMON H A. Causality and model abstraction[J]. Artificial Intelligence,1994,67(1):143 doi: 10.1016/0004-3702(94)90014-0
    [52]
    MATSUO Y,LECUN Y,SAHANI M,et al. Deep learning,reinforcement learning,and world models[J]. Neural Networks,2022,152:267 doi: 10.1016/j.neunet.2022.03.037

Catalog

    Article Metrics

    Article views (460) PDF downloads (120) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return