• 卓越行动计划二期中文领军期刊
  • 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊
FENG Yibiao, ZHANG Tiantian, ZHOU Jun, DOU Ruifen. On the exciton problem in transition metal dichalcogenides[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(6): 979-991. DOI: 10.12202/j.0476-0301.2023192
Citation: FENG Yibiao, ZHANG Tiantian, ZHOU Jun, DOU Ruifen. On the exciton problem in transition metal dichalcogenides[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(6): 979-991. DOI: 10.12202/j.0476-0301.2023192

On the exciton problem in transition metal dichalcogenides

More Information
  • Received Date: June 07, 2023
  • Available Online: December 03, 2023
  • The basic concepts of excitons and exciton complexes in TMD materials are discussed in this work, including bright and dark excitons, neutral and charged excitons, intralayer and interlayer excitons, and others. Further, methods are reviewed, of manipulating and tuning exciton complexes in TMD materials through strain, electrical and magnetic field, interlayer twist between neighboring layers. Finally, future research directions and applications of excitonic device are discussed.

  • [1]
    MA J,LI X Y,GAN L,et al. Controlling the dendritic structure and the photo-electrocatalytic properties of highly crystalline MoS2 on sapphire substrate[J]. 2D Materials,2018,5(3):031015 doi: 10.1088/2053-1583/aacc90
    [2]
    JIN C H,MA E Y,KARNI O,et al. Ultrafast dynamics in van der Waals heterostructures[J]. Nature Nanotechnology,2018,13(11):994 doi: 10.1038/s41565-018-0298-5
    [3]
    ZHANG S P,LI X Y,ZHANG X L,et al. Enhancement of the photoelectrocatalytic H2 evolution on a rutile-TiO2(001) surface decorated with dendritic MoS2 monolayer nanoflakes[J]. ACS Applied Energy Materials,2020,3(6):5756 doi: 10.1021/acsaem.0c00682
    [4]
    SONG J C W,GABOR N M. Electron quantum metamaterials in van der Waals heterostructures[J]. Nature Nanotechnology,2018,13(11):986 doi: 10.1038/s41565-018-0294-9
    [5]
    NOVOSELOV K S,JIANG D,SCHEDIN F,et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10451
    [6]
    MAK K F,LEE C G,HONE J,et al. Atomically thin MoS2:a new direct-gap semiconductor[J]. Physical Review Letters,2010,105(13):136805 doi: 10.1103/PhysRevLett.105.136805
    [7]
    SCHAIBLEY J R,YU H Y,CLARK G,et al. Valleytronics in 2D materials[J]. Nature Reviews Materials,2016,1:16055 doi: 10.1038/natrevmats.2016.55
    [8]
    GEIM A K,GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature,2013,499(7459):419 doi: 10.1038/nature12385
    [9]
    CEBALLOS F,BELLUS M Z,CHIU H Y,et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J]. ACS Nano,2014,8(12):12717 doi: 10.1021/nn505736z
    [10]
    XIAO J,ZHAO M,WANG Y,et al. Excitons in atomically thin 2D semiconductors and their applications[J]. Nanophotonics,2017,6(6):1309 doi: 10.1515/nanoph-2016-0160
    [11]
    XIAO Y,LIU J L,FU L. Moiré is more:access to new properties of two-dimensional layered materials[J]. Matter,2020,3(4):1142 doi: 10.1016/j.matt.2020.07.001
    [12]
    CHERNIKOV A,BERKELBACH T C,HILL H M,et al. Excitons in atomically thin transition-metal dichalcogenides[C]//2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications. San Jose,CA,USA: IEEE,2014:1
    [13]
    EGOROV V V. Theory of the J-band:from the Frenkel exciton to charge transfer[J]. Physics Procedia,2009,2(2):223 doi: 10.1016/j.phpro.2009.07.014
    [14]
    WANNIER G H. The structure of electronic excitation levels in insulating crystals[J]. Physical Review,1937,52(3):191 doi: 10.1103/PhysRev.52.191
    [15]
    CHERNIKOV A,BERKELBACH T C,HILL H M,et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2)[J]. Physical Review Letters,2014,113(7):076802 doi: 10.1103/PhysRevLett.113.076802
    [16]
    SHREE S,PARADISANOS I,MARIE X,et al. Guide to optical spectroscopy of layered semiconductors[J]. Nature Reviews Physics,2021,3(1):39
    [17]
    KYLÄNPÄÄ I,KOMSA H P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment[J]. Physical Review B,2015,92(20):205418 doi: 10.1103/PhysRevB.92.205418
    [18]
    MAK K F,SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics,2016,10(4):216 doi: 10.1038/nphoton.2015.282
    [19]
    SAMADI M,SARIKHANI N,ZIRAK M,et al. Group 6 transition metal dichalcogenide nanomaterials:synthesis,applications and future perspectives[J]. Nanoscale Horizons,2018,3(2):90 doi: 10.1039/C7NH00137A
    [20]
    马雅婷,程湘爱. 二维过渡金属硫族化合物的自旋-能谷特性研究进展[J]. 光电技术应用,2020,35(6):32 doi: 10.3969/j.issn.1673-1255.2020.06.006
    [21]
    SUNDARAM R S,ENGEL M,LOMBARDO A,et al. Electroluminescence in single layer MoS2[J]. Nano Letters,2013,13(4):1416 doi: 10.1021/nl400516a
    [22]
    LIU Y D,FANG H L,RASMITA A,et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures[J]. Science Advances,2019,5(4):eaav4506 doi: 10.1126/sciadv.aav4506
    [23]
    WU S F,BUCKLEY S,SCHAIBLEY J R,et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature,2015,520(7545):69 doi: 10.1038/nature14290
    [24]
    ROSS J S,KLEMENT P,JONES A M,et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nature Nanotechnology,2014,9(4):268 doi: 10.1038/nnano.2014.26
    [25]
    WITHERS F,DEL POZO-ZAMUDIO O,SCHWARZ S,et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature[J]. Nano Letters,2015,15(12):8223 doi: 10.1021/acs.nanolett.5b03740
    [26]
    BERKELBACH T C,HYBERTSEN M S,REICHMAN D R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides[J]. Physical Review B,2013,88(4):045318 doi: 10.1103/PhysRevB.88.045318
    [27]
    MAK K F,HE K L,LEE C G,et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials,2013,12(3):207 doi: 10.1038/nmat3505
    [28]
    BELLUS M Z,CEBALLOS F,CHIU H Y,et al. Tightly bound trions in transition metal dichalcogenide heterostructures[J]. ACS Nano,2015,9(6):6459 doi: 10.1021/acsnano.5b02144
    [29]
    ECHEVERRY J P,URBASZEK B,AMAND T,et al. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers[J]. Physical Review B,2016,93(12):121107 doi: 10.1103/PhysRevB.93.121107
    [30]
    PEI J J,YANG J,YILDIRIM T,et al. Many-body complexes in 2D semiconductors[J]. Advanced Materials,2019,31(2):e1706945 doi: 10.1002/adma.201706945
    [31]
    ZHANG X X,YOU Y M,ZHAO S Y F,et al. Experimental evidence for dark excitons in monolayer WSe2[J]. Physical Review Letters,2015,115(25):257403 doi: 10.1103/PhysRevLett.115.257403
    [32]
    MUELLER T,MALIC E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors[J]. NPJ 2D Materials and Applications,2018,2:29 doi: 10.1038/s41699-018-0074-2
    [33]
    MALIC E,SELIG M,FEIERABEND M,et al. Dark excitons in transition metal dichalcogenides[J]. Physical Review Materials,2018,2:014002
    [34]
    ZINKIEWICZ M,SLOBODENIUK A O,KAZIMIERCZUK T,et al. Neutral and charged dark excitons in monolayer WS2[J]. Nanoscale,2020,12(35):18153 doi: 10.1039/D0NR04243A
    [35]
    ZHOU Y,SCURI G,WILD D S,et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons[J]. Nature Nanotechnology,2017,12(9):856 doi: 10.1038/nnano.2017.106
    [36]
    胡倩颖,许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用[J]. 物理学报,2022,71(12):124
    [37]
    JIANG Y,CHEN S L,ZHENG W H,et al. Interlayer exciton formation,relaxation,and transport in TMD van der Waals heterostructures[J]. Light:Science & Applications,2021,10:72
    [38]
    HONG X P,KIM J,SHI S F,et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology,2014,9(9):682 doi: 10.1038/nnano.2014.167
    [39]
    RIVERA P,SCHAIBLEY J R,JONES A M,et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nature Communications,2015,6:6242 doi: 10.1038/ncomms7242
    [40]
    CHEN H L,WEN X W,ZHANG J,et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures[J]. Nature Communications,2016,7:12512 doi: 10.1038/ncomms12512
    [41]
    MILLER B,STEINHOFF A,PANO B,et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures[J]. Nano Letters,2017,17(9):5229 doi: 10.1021/acs.nanolett.7b01304
    [42]
    YU H Y,LIU G B,GONG P,et al. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides[J]. Nature Communications,2014,5:3876 doi: 10.1038/ncomms4876
    [43]
    XIAO D,LIU G B,FENG W X,et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters,2012,108(19):196802 doi: 10.1103/PhysRevLett.108.196802
    [44]
    YU H Y,CUI X D,XU X D,et al. Valley excitons in two-dimensional semiconductors[J]. National Science Review,2015,2(1):57 doi: 10.1093/nsr/nwu078
    [45]
    MAI C,BARRETTE A,YU Y F,et al. Many-body effects in valleytronics:direct measurement of valley lifetimes in single-layer MoS2[J]. Nano Letters,2014,14(1):202 doi: 10.1021/nl403742j
    [46]
    ZENG H L,DAI J F,YAO W,et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology,2012,7(8):490 doi: 10.1038/nnano.2012.95
    [47]
    PLECHINGER G,NAGLER P,ARORA A,et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide[J]. Nature Communications,2016,7:12715 doi: 10.1038/ncomms12715
    [48]
    ZHANG X L,ZHOU J,LI S Q,et al. Enhanced valley polarization of bilayer MoSe2 with variable stacking order and interlayer coupling[J]. The Journal of Physical Chemistry Letters,2021,12(25):5879 doi: 10.1021/acs.jpclett.1c01578
    [49]
    BROTONS-GISBERT M,BAEK H,MOLINA-SÁNCHEZ A,et al. Spin-layer locking of interlayer excitons trapped in Moiré potentials[J]. Nature Materials,2020,19(6):630 doi: 10.1038/s41563-020-0687-7
    [50]
    JONES A M,YU H Y,GHIMIRE N J,et al. Optical generation of excitonic valley coherence in monolayer WSe2[J]. Nature Nanotechnology,2013,8(9):634 doi: 10.1038/nnano.2013.151
    [51]
    WANG T M,MIAO S N,LI Z P,et al. Giant valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure[J]. Nano Letters,2020,20(1):694 doi: 10.1021/acs.nanolett.9b04528
    [52]
    ZHANG C D,CHUU C P,REN X B,et al. Interlayer couplings,moiré patterns,and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers[J]. Science Advances,2017,3(1):e1601459 doi: 10.1126/sciadv.1601459
    [53]
    SHABANI S,HALBERTAL D,WU W J,et al. Deep Moiré potentials in twisted transition metal dichalcogenide bilayers[J]. Nature Physics,2021,17(6):720 doi: 10.1038/s41567-021-01174-7
    [54]
    YU H Y,LIU G B,TANG J J,et al. Moiré excitons:from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices[J]. Science Advances,2017,3(11):e1701696 doi: 10.1126/sciadv.1701696
    [55]
    LI H,LING J Y,LIN J M,et al. Interface engineering in two-dimensional heterostructures towards novel emitters[J]. Journal of Semiconductors,2023,44(1):011001 doi: 10.1088/1674-4926/44/1/011001
    [56]
    ALEXEEV E M,RUIZ-TIJERINA D A,DANOVICH M,et al. Resonantly hybridized excitons in Moiré superlattices in van der Waals heterostructures[J]. Nature,2019,567(7746):81 doi: 10.1038/s41586-019-0986-9
    [57]
    JIN C H,REGAN E C,YAN A M,et al. Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices[J]. Nature,2019,567(7746):76 doi: 10.1038/s41586-019-0976-y
    [58]
    TRAN K,MOODY G,WU F C,et al. Evidence for Moiré excitons in van der Waals heterostructures[J]. Nature,2019,567(7746):71 doi: 10.1038/s41586-019-0975-z
    [59]
    SEYLER K L,RIVERA P,YU H Y,et al. Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature,2019,567(7746):66 doi: 10.1038/s41586-019-0957-1
    [60]
    ANDERSEN T I,SCURI G,SUSHKO A,et al. Excitons in a reconstructed Moiré potential in twisted WSe2/WSe2 homobilayers[J]. Nature Materials,2021,20(4):480 doi: 10.1038/s41563-020-00873-5
    [61]
    LI Z D,LU X B,CORDOVILLA LEON D F,et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures[J]. ACS Nano,2021,15(1):1539 doi: 10.1021/acsnano.0c08981
    [62]
    LIU Y P,ZENG C,YU J,et al. Moiré superlattices and related Moiré excitons in twisted van der Waals heterostructures[J]. Chemical Society Reviews,2021,50(11):6401 doi: 10.1039/D0CS01002B
    [63]
    ROSS J S,WU S F,YU H Y,et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J]. Nature Communications,2013,4:1474 doi: 10.1038/ncomms2498
    [64]
    PEIMYOO N,DEILMANN T,WITHERS F,et al. Electrical tuning of optically active interlayer excitons in bilayer MoS2[J]. Nature Nanotechnology,2021,16(8):888 doi: 10.1038/s41565-021-00916-1
    [65]
    MOLAS M R,FAUGERAS C,SLOBODENIUK A O,et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides[J]. 2D Materials,2017,4(2):021003 doi: 10.1088/2053-1583/aa5521
    [66]
    ZHANG X X,CAO T,LU Z G,et al. Magnetic brightening and control of dark excitons in monolayer WSe2[J]. Nature Nanotechnology,2017,12(9):883 doi: 10.1038/nnano.2017.105
    [67]
    LIN Y X,LING X,YU L L,et al. Dielectric screening of excitons and trions in single-layer MoS2[J]. Nano Letters,2014,14(10):5569 doi: 10.1021/nl501988y
    [68]
    HE K L,POOLE C,MAK K F,et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Letters,2013,13(6):2931 doi: 10.1021/nl4013166
    [69]
    PEIMYOO N,YANG W H,SHANG J Z,et al. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2[J]. ACS Nano,2014,8(11):11320 doi: 10.1021/nn504196n
    [70]
    HUANG S X,LING X,LIANG L B,et al. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy[J]. Nano Letters,2014,14(10):5500 doi: 10.1021/nl5014597
    [71]
    LIU K H,ZHANG L M,CAO T,et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers[J]. Nature Communications,2014,5:4966 doi: 10.1038/ncomms5966
    [72]
    ZHENG S J,SUN L F,ZHOU X H,et al. Coupling and interlayer exciton in twist-stacked WS2 bilayers[J]. Advanced Optical Materials,2015,3(11):1600 doi: 10.1002/adom.201500301
    [73]
    PARADISANOS I,SHREE S,GEORGE A,et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition[J]. Nature Communications,2020,11:2391 doi: 10.1038/s41467-020-16023-z
    [74]
    ZHAO X X,QIAO J S,ZHOU X,et al. Strong Moiré excitons in high-angle twisted transition metal dichalcogenide homobilayers with robust commensuration[J]. Nano Letters,2022,22(1):203 doi: 10.1021/acs.nanolett.1c03622
    [75]
    ZHOU J,CUI J,DU S,et al. A natural indirect-to-direct band gap transition in artificially fabricated MoS2 and MoSe2 flowers[J]. Nanoscale,2023,15(17):7792 doi: 10.1039/D3NR00477E
  • Related Articles

    [1]LI Jie, CHU Zhilin, LI Xiaomeng, ZHOU Xiaojin. Identification of ZmRBOHD1 interacting with ZmCDPK32 in maize[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(4): 629-636. DOI: 10.12202/j.0476-0301.2023114
    [2]ZHANG Fengshou, FU Yanlong, MAO Fei, LI Changkai, ZHANG Chao. Progress on microscopic mechanism of electronic energy loss in the interactions between low energy ions and matter[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(5): 755-762. DOI: 10.12202/j.0476-0301.2022135
    [3]MA Xiaojiao, DAI Jiping, XIA Junqing. Forecasting the interaction in dark matter-dark energy models from Euclid-like galaxy survey[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(2): 194-204. DOI: 10.12202/j.0476-0301.2020132
    [4]LIU Yan, CHEN Liujun, LI Xiaomeng, CHEN Jiawei, DI Zengru. The interaction of information and matter: a case study about the coevolution of human language and brain[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 775-780. DOI: 10.12202/j.0476-0301.2019273
    [5]HAO Yiqi ZHANG Quanguo. Microbial interactions : from observation to prediction[J]. Journal of Beijing Normal University(Natural Science), 2016, 52(6): 809-815. DOI: 10.16360 / j.cnki.jbnuns.2016.06.019
    [6]YING Minju WANGXiaoxiao CHENG Wei LIAOBin ZHANGXu. 激光烧蚀靶材蒸发波模型的气体动力学 与冲量耦合系数计算[J]. Journal of Beijing Normal University(Natural Science), 2015, 51(1): 40. DOI: 10.16360/j.cnki.jbnuns.2015.01.010
    [7]TANG Huo DENGGuantie. 亚纯近于凸函数子类的某些性质[J]. Journal of Beijing Normal University(Natural Science), 2015, 51(1): 14. DOI: 10.16360/j.cnki.jbnuns.2015.01.004
    [8]GAOYadan HUANG Huihui CENJurenWANG Mengqi YINRuijian WEI Qun. INTERACTION BETWEEN CALCINEURIN AND MORIN[J]. Journal of Beijing Normal University(Natural Science), 2014, 50(2): 174.
    [9]ZH U Meilin LU Jie HAN Mei. INTERACTION OF EPIGALLOCATECHIN GALLATE WITH HUMAN SERUM ALBUMIN[J]. Journal of Beijing Normal University(Natural Science), 2011, 47(3): 277-280.
    [10]Ding Huanping 1, 2) Chen Xiaobo 1,2) Yang Xiuqing 1, 2) Li Hui 1,2) Wang Shuifeng2) Guo Jinghua2). A STUDY ON THE INTERACTION OF BOVINE SERUM ALBUMIN AND CEFRADINE AS WELL AS CEFADROXIL[J]. Journal of Beijing Normal University(Natural Science), 2006, 42(2): 157-160.
  • Cited by

    Periodical cited type(1)

    1. 邹琳,王兴军,李生娟. 过渡金属硫族化合物基于激子的光致发光调控研究进展. 广州化学. 2024(05): 17-22 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (812) PDF downloads (271) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return