Citation: | ZHAO Jiaqi, ZHANG Chunlai, WANG Xuesong. Spatial and temporal variation and prediction of wind energy in Hexi corridor from 1960 to 2020[J]. Journal of Beijing Normal University(Natural Science). DOI: 10.12202/j.0476-0301.2024253 |
Statistics from the hourly wind speed collected between 1960 and 2020 from 12 meteorological stations in the Hexi Corridor indicate that the western region of the corridor is located in a intermediate to high wind energy environment, while the eastern region is located in a low wind energy environment. Furthermore, the variation rules of the annual average wind speed, the probability of sand-driving wind, and drift potential differ between the eastern and western regions of the corridor. WeibullCum distribution function is universally applicable to express the annual cumulative probability distribution of hourly wind speeds at various meteorological stations. The interannual variation of the constant terms B in the WeibullCum function exhibits periodic fluctuation, while C and D show a decreasing trend. The prediction equations of cumulative probability distribution function of wind speed are then established for the eastern and western regions of Hexi Corridor, respectively. It is observed that the prediction equations have high prediction accuracy for annual average wind speed and sand-driving wind probability, whereas the simulated drift potential is overall less than the actual results. The actually statistical results from 2021 to 2024 further confirm the above conclusions. The wind variations exhibit distinct cycles in the eastern and western regions of the Hexi Corridor. In the next 10 years, it is expected that the peak values for annual average wind speed and sand-driving wind probability will occur around 2025 in the eastern region, while the peak will be later than 2030 in the western region.
[1] |
CHEPIL W S,SIDDOWAY F H,ARMBRUST D V. Climatic index of wind erosion conditions in the great Plains[J]. Soil Science Society of America Journal,1963,27(4):449 doi: 10.2136/sssaj1963.03615995002700040025x
|
[2] |
MCTAINSH G H,LYNCH A W,TEWS E K. Climatic controls upon dust storm occurrence in eastern Australia[J]. Journal of Arid Environments,1998,39(3):457 doi: 10.1006/jare.1997.0373
|
[3] |
BAGNOLD R A. The physics of blown sand and desert dunes[M]. London:Methuen & co. ,ltd. ,1941
|
[4] |
WOODRUFF N P,SIDDOWAY F H. A wind erosion equation[J]. Soil Science Society of America Journal,1965,29(5):602 doi: 10.2136/sssaj1965.03615995002900050035x
|
[5] |
FRYREAR D W,BILBRO J D,SALEH A,et al. RWEQ:improved wind erosion technology. Journal of Soil and Water Conservation[J],2000,55(2):183-189.
|
[6] |
ZOU X Y,LI H R,LIU W,et al. Application of a new wind driving force model in soil wind erosion area of northern China[J]. Journal of Arid Land,2020,12(3):423 doi: 10.1007/s40333-020-0103-9
|
[7] |
李慧,孙宏斌,张芳. 风电场风速分布模型研究综述[J]. 电工电能新技术,2014,33(8):62 doi: 10.3969/j.issn.1003-3076.2014.08.012
|
[8] |
赵嘉琪,张春来,魏国茹. 阿拉善右旗不同时间尺度的风速概率分布[J]. 中国沙漠,2023,43(2):37
|
[9] |
GAO Y,MA S X,WANG T,et al. Assessing the wind energy potential of China in considering its variability/intermittency[J]. Energy Conversion and Management,2020,226:113580 doi: 10.1016/j.enconman.2020.113580
|
[10] |
邱新法,曾燕,缪启龙. 我国沙尘暴的时空分布规律及其源地和移动路径[J]. 地理学报,2001,56(3):316 doi: 10.3321/j.issn:0375-5444.2001.03.008
|
[11] |
钱正安,宋敏红,李万元. 近50年来中国北方沙尘暴的分布及变化趋势分析[J]. 中国沙漠,2002,22(2):106 doi: 10.3321/j.issn:1000-694X.2002.02.002
|
[12] |
李耀辉,张存杰,高学杰. 西北地区大风日数的时空分布特征[J]. 中国沙漠,2004,24(6):715 doi: 10.3321/j.issn:1000-694X.2004.06.010
|
[13] |
周自江,王锡稳,牛若芸. 近47年中国沙尘暴气候特征研究[J]. 应用气象学报,2002,13(2):193 doi: 10.3969/j.issn.1001-7313.2002.02.008
|
[14] |
FRYBERGER S G. Dune forms and wind regime[M]. In:Mckee E D. A Study of Global Sand Seas. Honolulu,Hawaii,USA:University Press of the Pacific,1979.
|
[15] |
吴正. 风沙地貌与治沙工程学[M]. 北京:科学出版社,2003
|
[16] |
COOKE R,WARREN A,GOUDIE A. Desert geomorphology [M]. London:ULC Press,1993.
|
[17] |
张克新,潘少明,曹立国. 1961−2010年河西地区平均风速时空变化趋势分析[J]. 地理科学,2014,34(11):1404
|
[18] |
王毅荣,张存杰. 河西走廊风速变化及风能资源研究[J]. 高原气象,2006,25(6):1196 doi: 10.3321/j.issn:1000-0534.2006.06.030
|
[19] |
WU J,ZHA J L,ZHAO D M,et al. Changes in terrestrial near-surface wind speed and their possible causes:an overview[J]. Climate Dynamics,2018,51(5):2039
|
[20] |
蒋冲,王飞,刘焱序,等. 秦岭南北风速时空变化及突变特征分析[J]. 地理科学,2013,33(2):244
|
[21] |
赵宗慈,罗勇,江滢,等. 近50年中国风速减小的可能原因[J]. 气象科技进展,2016,6(3):106
|
[22] |
GE J,FENG D P,YOU Q L,et al. Characteristics and causes of surface wind speed variations in Northwest China from 1979 to 2019[J]. Atmospheric Research,2021,254:105527 doi: 10.1016/j.atmosres.2021.105527
|
[23] |
LI Y P,CHEN Y N,LI Z,et al. Recent recovery of surface wind speed in northwest China[J]. International Journal of Climatology,2018,38(12):4445 doi: 10.1002/joc.5679
|
[24] |
ZHANG G F,AZORIN-MOLINA C,CHEN D L,et al. Uneven warming likely contributed to declining near-surface wind speeds in northern China between 1961 and 2016[J]. Journal of Geophysical Research:Atmospheres,2021,126(11):e2020JD033637
|
[25] |
丁彩霞,延军平,李敏敏. 西北地区气候变化与风速响应特征[J]. 水土保持通报,2014,34(4):134
|
[26] |
陈渭南,董治宝,杨佐涛,等. 塔克拉玛干沙漠的起沙风速[J]. 地理学报,1995,50(4):360 doi: 10.3321/j.issn:0375-5444.1995.04.009
|
[27] |
张克存,奥迎焕,屈建军,等. 巴丹吉林沙漠湖泊-沙山近地表风沙动力环境[J]. 干旱区地理,2013,36(5):790
|