基于GIS与XGBoost算法的山东省新石器时代考古遗址预测模型研究

Research on Prediction Model of Neolithic Archaeological Sites in Shandong Province Based on GIS and XGBoost Algorithm

  • 摘要: 构建考古遗址预测模型可以精准识别遗址的潜在空间范围,有助于对尚未发现的遗址进行前瞻性保护.本文以山东省为研究区域,收集了1916个新石器时代遗址(不含墓葬)作为研究样本,按照1∶1的比例随机提取1916个非遗址点作为负样本,并选取高程、坡度、坡向、剖面曲率、平面曲率、微地貌、坡位、濒水距离8个自然地理环境影响因子,构建考古遗址预测模型的指标体系.运用GIS空间分析方法和XGBoost算法,构建考古遗址预测模型.基于该模型进行了潜在遗址点的空间范围预测,同时分析了影响因子的重要性.研究结果表明:1)运用XGBoost算法构建的考古遗址预测模型可获取较高的精度,本研究的AUC测试值为0.85;2)用最佳样本训练后的模型,将结果划分为低、中、高3种等级,并绘制出考古遗址概率空间分布图,得出遗址主要分布在平原地区;3)XGBoost算法对影响因子重要性分析表明,坡位、微地貌、高程是影响山东省新石器时代遗址空间分布格局的主要自然地理因子.研究发现,XGBoost算法具有较好的稳定性和预测能力,构建的模型为考古遗址预测提供了新的研究方法,并为考古发掘提供了重要技术支撑,揭示了新石器时代遗址与地理环境的关系.

     

    Abstract: Constructing a prediction model for archaeological sites can accurately identify the potential spatial extent of archaeological sites, which can help to prospectively protect undiscovered archaeological sites. A collection of 1 916 Neolithic archaeological sites (excluding burial sites) in Shandong Province was studied in this paper, with 1916 non-site locations used as negative controls (at a 1:1 ratio). Eight natural geographic environmental influencing factors(elevation, slope, slope orientation, profile curvature, planar curvature, micro-geomorphology, slope position, and distance to water boundaries) were selected to construct an index system for archaeological site prediction model. Using GIS spatial analysis method and the XGBoost algorithm, we constructed a predictive model for archaeological sites, which is used to predict the spatial extent of potential sites and analyze the importance of influencing factors. The archaeological site prediction model constructed with XGBoost algorithm achieves high accuracy, with an AUC value of 0.85. The model trained with optimal samples categorizes the results into low, medium, and high grades, mapped the spatial distribution of site probabilities, and revealed that sites primarily cluster in plains. Based on the XGBoost algorithm for ranking importance of influencing factors, slope position, microgeomorphology and elevation are the top three factors influencing the siting of Neolithic archaeologicalsites. The XGBoost algorithm has good stability and prediction ability. The constructed model provides a new research method for prediction of archaeological sites, and provides important technical support for field archaeological excavation and elucidates the relationship between prehistoric settlement patterns and geographical environments.

     

/

返回文章
返回