有限域上六次对角方程的零点个数研究

On the number of zeros of sixth-degree diagonal forms over finite fields

  • 摘要: 探讨了有限域上六次对角方程 \displaystyle\sum _k=1^nx_k^6=0 的零点个数问题.通过运用狄利克雷特征、高斯和的解析性质以及雅可比和的组合性质,获得了六次对角方程零点个数的显式表达式.将三、四次有限域上对角方程的零点个数问题推广至六次,从而得到了有限域上的高次对角方程, 以期为后续研究提供参考.

     

    Abstract: This paper investigates the number of zeros of sixth-degree diagonal equations \sum _k=1^nx_k^6=0 over finite fields. By applying Dirichlet characters, the analytic properties of Gauss sums, and the combinatorial properties of Jacobi sums, we derive an explicit expression for the number of their zeros. The work extends the study of zeros of diagonal equations from the cubic and quartic cases to the sixth-degree case, thereby advancing the development of high-degree diagonal equations over finite fields and providing a reference for subsequent research.

     

/

返回文章
返回