大语言模型驱动的期货市场新闻多主题和多层次情感分析框架

Large language model-driven multi-topic and multi-level sentiment analysis framework for futures market news

  • 摘要: 针对期货市场新闻复杂情感信号系统性深入挖掘问题,提出了一种大语言模型驱动的期货市场新闻多主题和多层次情感分析框架.该框架通过“整体-主题-方面/事件”的层次化策略构建了覆盖多维度市场要素的主题体系,实现了主题情感的精准判别;通过引入方面观点情感三元组抽取和事件情感分析技术,识别了关键市场要素和突发事件的情感影响;采用低秩微调技术实现了本地化大语言模型的高效领域适配,验证了大语言模型在金融文本分析中的适用性.试验结果表明,该框架在多个情感分析任务上均表现良好,能够有效区分不同主题的情感倾向,并深入挖掘新闻文本中的复杂情感信号.通过本研究,可为期货市场新闻深度情感分析提供系统性解决方案,为研究新闻情感对期货市场影响的量化分析提供可靠技术支持.

     

    Abstract: To address the need for the systematic and in-depth mining of complex sentiment signals from futures market news, this paper proposes a large language model -driven multi-topic and multi-level sentiment analysis framework. Through a "macro-topic-specific aspect/event" hierarchical strategy, the framework constructs a topic system that covers multi-dimensional market elements and achieves accurate discrimination of topic-level sentiments. By incorporating aspect-sentiment-opinion triplet extraction and event sentiment analysis techniques, it identifies the sentiment impact of key market elements and unexpected events. Low-rank adaptation is employed to achieve efficient domain adaptation of a localized large language model, validating the applicability of large language models in financial text analysis. Experimental results show that the proposed framework performs well across multiple sentiment analysis tasks, effectively distinguishing the sentiment tendencies of different topics and deeply mining complex sentiment signals within news texts. This research provides a systematic solution for in-depth sentiment analysis of futures market news and offers reliable technical support for the quantitative analysis of the impact of news sentiment on the futures market.

     

/

返回文章
返回