基于图神经网络的企业财务困境预测方法

Graph neural network applied to predict corporate financial distress

  • 摘要: 聚合时域、空间域等信息,提出了2种基于图神经网络(graph neural network,GNN)的财务困境预测框架,并通过融合财务数据与专利信息,设计类别不平衡处理模块,以提高预测的准确性.模型评估时,分别验证了类别不平衡处理模块的有效性和专利数据增益信息、技术创新信息与图结构建模的协同价值.试验结果表明,采用先空间域后时域的信息聚合策略的多图卷积循环网络效果更好.通过本研究,可为财务困境预测提供新思路.

     

    Abstract: Two financial distress prediction frameworks integrating information from the time and spatial domains are proposed based on graph neural network (GNN). A class imbalance handling module is designed after fusion of financial data with patent information to enhance prediction accuracy. To evaluate this model, effectiveness of class imbalance handling module, synergistic values for incremental information of patent data, technological innovation information, and graph structure modeling are each verified. It is found that multi-graph convolutional recurrent network with the “spatial-first, temporal-later” information aggregation strategy delivers superior performance. The present work provides new strategies for financial distress prediction.

     

/

返回文章
返回