关于Dn型外尔群的本原幂等元

On the primitive idempotents of the Weyl group of type Dn

  • 摘要:n \text≥4是自然数,W(D_n) D_n 型的有限外尔群,设K是一个域且群代数KW(D_n) 在域K上分裂半单.对于KW(D_n )的每一个单模U,精确构造了一个拟幂等元z_U \in K\left W\left( D_n \right) \right,即存在c_U \in K^ \times ,有z_U^2 = c_Uz_U,使得c_U^ - 1z_U为本原幂等元,并且z_UK\left W\left( D_n \right) \right作为右K\left W\left( D_n \right) \right-模同构于U.主要研究结果推广了Dipper、James关于A型及B型外尔群半单群代数的本原幂等元的构造.

     

    Abstract: Let 4\text≤ n\in \bfN and W(D_n) the Weyl group of Type D_n .Let K be a field and group algebra KW(D_n) is split semisimple on the field K.for each simple module U of KW(D_n ), we explicitly construct a quasi-idempotent z_U \in K\left W\left( D_n \right) \right (i.e., z_U^2=c_U z_U for some c_U \in K^ \times such that c_U^-1 z_U is a primitive idempotent and z_UK\left W\left( D_n \right) \right \cong U as a right KW(D_n )-module.The main results of this paper generalize the construction of primitive idempotents by Dipper and James on semi-simple group algebras of type A and B Weyl groups.

     

/

返回文章
返回