• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

El Niño事件发展期对中国东部夏季极端降水的影响

蒲于莉 洪沁 冯娟

蒲于莉, 洪沁, 冯娟. El Niño事件发展期对中国东部夏季极端降水的影响[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023035
引用本文: 蒲于莉, 洪沁, 冯娟. El Niño事件发展期对中国东部夏季极端降水的影响[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023035
PU Yuli, HONG Qin, FENG Juan. Influence of developing phase of the El Niño events on the summer extreme precipitation in eastern China[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023035
Citation: PU Yuli, HONG Qin, FENG Juan. Influence of developing phase of the El Niño events on the summer extreme precipitation in eastern China[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023035

El Niño事件发展期对中国东部夏季极端降水的影响

doi: 10.12202/j.0476-0301.2023035
基金项目: 国家自然科学基金资助项目(42222501,41975079)
详细信息
    通讯作者:

    E-mail:fengjuan@bnu.edu.cn

  • 中图分类号: P426.6

Influence of developing phase of the El Niño events on the summer extreme precipitation in eastern China

  • 摘要: 利用1961—2020年的再分析资料和中国台站观测降水数据集,研究了东部型El Niño事件发展期夏季对中国夏季极端降水的影响.结果表明,东部型El Niño在发展期夏季对中国极端降水的影响主要表现在中国东部地区,造成华北和江南地区极端降水减少,江淮地区极端降水显著增多.进一步分析其中的物理过程发现,当东部型El Niño事件处于发展期夏季时,赤道东太平洋出现显著的海表面温度(Sea Surface Temperature,SST)暖异常,西太平洋区域表现为冷异常,导致反气旋性环流异常.同时,西北太平洋区域存在SST暖异常,对应气旋性环流异常.异常的SST分布激发了“负-正-负(+ - +)”的东亚-太平洋型(East Asia-Pacific,EAP)波列异常,对应着“正-负-正(- + -)”的降水配置.在两个异常环流的交汇处有显著的辐合上升运动,为江淮地区带去了充足的水汽.而华北地区主要受到反气旋性环流和蒙古高压的共同控制,并受到来自高纬度地区的异常西北风影响,存在显著的辐散下沉运动,降水的动力条件不足.并且,在东部型El Niño事件发展期夏季,西太平洋副热带高压位置异常偏东,不利于江南地区降水的发生及水汽的输送,进一步造成江南地区极端降水减少.以上结果显示东部型El Niño事件在其发展期夏季对中国极端降水存在重要的影响,为区域极端气候预测提供了理论依据.

     

  • 图  1  东部型El Niño发展期对夏季极端降水的影响

    a.1961—2020年中国夏季降水量的空间分布(单位:mm∙month-1);b.夏季极端降水量占夏季总降水量的百分比(单位:%)

    图  2  极端降水异常在El Niño发展期夏季的空间分布

    注:打点区域为通过0.01显著性检验水平,单位:mm·month−1.

    图  3  夏季极端降水对东部型El Niño事件发展期的响应

    a. 1961—2020年夏季极端降水指数与夏季极端降水量相关的空间分布(打点区域表示通过0.01显著性检验水平);b. 夏季Niño3指数与夏季极端降水指数的标准化时间序列.

    图  4  SST的异常分布

    a. El Niño发展期夏季的SST异常分布;b. 夏季强、弱极端降水年合成的SST异常分布(打点区域表示通过0.05显著性水平检验;单位:℃)

    图  5  El Niño发展期夏季500 hPa位势高度和风场异常分布

    注:阴影为打点区域表示通过0.1显著性水平检验,单位:gpm;矢量为红色箭头区域表示通过0.1显著性水平检验,单位:m·s−1.

    图  6  El Niño发展期夏季700 hPa辐散风异常场及700 hPa垂直速度异常场

    注:矢量为红色箭头区域表示通过0.1显著性水平检验;单位:m·s−1;阴影为打点区域表示通过0.1显著性水平检验;单位:10−3·Pa·s−1).

    图  7  El Niño发展期夏季整层水汽通量异常场和水汽通量散度异常场

    注:矢量为红色箭头区域表示通过0.1显著性水平检验,单位:g·s−1·cm−1;阴影为打点区域表示通过0.1显著性水平检验;单位:10−4·g·s−1·cm−2.

  • [1] BJERKNES J. Atmospheric teleconnections from the equatorial pacific1[J]. Monthly Weather Review,1969,97(3):163 doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
    [2] HARRISON D E,LARKIN N K. Seasonal U. S. temperature and precipitation anomalies associated with El Niño:Historical results and comparison with 1997-98[J]. Geophysical Research Letters,1998,25(21):3959 doi: 10.1029/1998GL900061
    [3] TIMMERMANN A,AN S I,KUG J S,et al. El Niño-southern oscillation complexity[J]. Nature,2018,559(7715):535 doi: 10.1038/s41586-018-0252-6
    [4] MCPHADEN M J. Genesis and evolution of the 1997-98 el Niño[J]. Science,1999,283(5404):950 doi: 10.1126/science.283.5404.950
    [5] LV A F,QU B,JIA S F,et al. Influence of three phases of El Niño-Southern Oscillation on daily precipitation regimes in China[J]. Hydrology and Earth System Sciences,2019,23(2):883 doi: 10.5194/hess-23-883-2019
    [6] ZHANG R H,SUMI A,KIMOTO M. Impact of El Niño on the east Asian monsoon[J]. Journal of the Meteorological Society of Japan Ser 1996,74(1):49
    [7] WU R G,HUANG G,DU Z C,et al. Cross-season relation of the South China Sea precipitation variability between winter and summer[J]. Climate Dynamics,2014,43(1):193
    [8] FENG J,LI J P,ZHENG F,et al. Contrasting impacts of developing phases of two types of El Niño on Southern China rainfall[J]. Journal of the Meteorological Society of Japan Ser Ⅱ,2016,94(4):359 doi: 10.2151/jmsj.2016-019
    [9] LIU Y Y,HU Z Z,WU R G. Was the extremely wet winter of 2018/2019 in the lower reach of the Yangtze River driven by El Niño-Southern Oscillation?[J]. International Journal of Climatology,2020,40(15):6441 doi: 10.1002/joc.6591
    [10] WU R G,HU Z Z,KIRTMAN B P. Evolution of ENSO-related rainfall anomalies in east Asia[J]. Journal of Climate,2003,16(22):3742 doi: 10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2
    [11] XUE F,LIU C Z. The influence of moderate ENSO on summer rainfall in Eastern China and its comparison with strong ENSO[J]. Chinese Science Bulletin,2008,53(5):791 doi: 10.1007/s11434-008-0002-5
    [12] CAO Q,HAO Z C,YUAN F F,et al. Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China[J]. Hydrology and Earth System Sciences,2017,21(11):5415 doi: 10.5194/hess-21-5415-2017
    [13] FENG S,HU Q. Variations in the teleconnection of ENSO and summer rainfall in Northern China:a role of the Indian summer monsoon[J]. Journal of Climate,2004,17(24):4871 doi: 10.1175/JCLI-3245.1
    [14] FENG J,LI J P. Influence of El Niño Modoki on spring rainfall over South China[J]. Journal of Geophysical Research,2011,116(D13):D13102 doi: 10.1029/2010JD015160
    [15] 李丽平,倪语蔓,杨春艳,等. 两类El Niňo事件次年夏季长江-黄河流域降水低频特征及低频水汽输送途径差异[J]. 大气科学学报,2019,42(3):420
    [16] MOSS M E,PEARSON C P,MCKERCHAR A I. The Southern Oscillation index as a predictor of the probability of low streamflows in New Zealand[J]. Water Resources Research,1994,30(10):2717 doi: 10.1029/94WR01308
    [17] CHIEW F H S,MCMAHON T A. Global ENSO-streamflow teleconnection,streamflow forecasting and interannual variability[J]. Hydrological Sciences Journal,2002,47(3):505 doi: 10.1080/02626660209492950
    [18] TAO,GAO. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China[J]. Atmospheric Research,2017,197:379 doi: 10.1016/j.atmosres.2017.07.017
    [19] QIN D H,DING Y J,MU M. Climate and Environmental Change in China:1951-2012[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2016
    [20] XIAO M Z,ZHANG Q,SINGH V P. Spatiotemporal variations of extreme precipitation regimes during 1961-2010 and possible teleconnections with climate indices across China[J]. International Journal of Climatology,2017,37(1):468 doi: 10.1002/joc.4719
    [21] WENG H Y,LAU K M,XUE Y K. Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability[J]. Journal of the Meteorological Society of Japan Ser Ⅱ,1999,77(4):845 doi: 10.2151/jmsj1965.77.4_845
    [22] CHANG C P,ZHANG Y S,LI T. Interannual and interdecadal variations of the east Asian summer monsoon and tropical Pacific SSTs. part I:roles of the subtropical ridge[J]. Journal of Climate,2000,13(24):4310 doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
    [23] ZHOU W,CHAN J C L. ENSO and the South China Sea summer monsoon onset[J]. International Journal of Climatology,2007,27(2):157 doi: 10.1002/joc.1380
    [24] TAM C Y,et al. Influence of South China Sea SST and the ENSO on winter rainfall over South China[J]. Advances in Atmospheric Sciences,2010,27(4):832 doi: 10.1007/s00376-009-9102-7
    [25] KUBOTA H,KOSAKA Y,XIE S P. A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability[J]. International Journal of Climatology,2016,36(4):1575 doi: 10.1002/joc.4441
    [26] WANG B,WU R G,FU X. Pacific-east Asian teleconnection:how does ENSO affect east Asian climate?[J]. Journal of Climate,2000,13(9):1517 doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [27] CHEN W,LU R Y,DONG B W. Intensified anticyclonic anomaly over the western North Pacific during El Niño decaying summer under a weakened Atlantic thermohaline circulation[J]. Journal of Geophysical Research:Atmospheres,2014,119(24):13637
    [28] 张人禾,闵庆烨,苏京志. 厄尔尼诺对东亚大气环流和中国降水年际变异的影响:西北太平洋异常反气旋的作用[J]. 中国科学(地球科学),2017,47(5):544
    [29] 孔锋,史培军,方建,等. 全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望[J]. 灾害学,2017,32(2):165.
    [30] 卢珊,胡泽勇,王百朋,等. 近56年中国极端降水事件的时空变化格局[J]. 高原气象,2020,39(4):683
    [31] XUE G. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics Chinese Edition,2013,56(4):1102.
    [32] KALNAY E,KANAMITSU M,KISTLER R,et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society,1996,77(3):437 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [33] HUANG B Y,THORNE P W,BANZON V F,et al. Extended reconstructed sea surface temperature,version 5 (ERSSTv5):upgrades,validations,and intercomparisons[J]. Journal of Climate,2017,30(20):8179 doi: 10.1175/JCLI-D-16-0836.1
    [34] REN H L,JIN F F. Niño indices for two types of ENSO[J]. Geophysical Research Letters,2011,38(4):518.
    [35] 李建平,任荣彩,齐义泉,等. 亚洲区域海−陆−气相互作用对全球和亚洲气候变化的作用研究进展[J]. 大气科学,2013,37(2):518.
    [36] ZHANG W J,JIN F F,TURNER A. Increasing autumn drought over southern China associated with ENSO regime shift[J]. Geophysical Research Letters,2014,41(11):4020-4026. doi: 10.1002/2014GL060130
    [37] CHEN L,LI G,LONG S M,et al. Interdecadal change in the influence of El Niño in the developing stage on the central China summer precipitation[J]. Climate Dynamics,2022,59(5):1265
    [38] BELL J L,SLOAN L C,SNYDER M A. Regional changes in extreme climatic events:a future climate scenario[J]. Journal of Climate,2004,17(1):81 doi: 10.1175/1520-0442(2004)017<0081:RCIECE>2.0.CO;2
    [39] TOUMA D,MICHALAK A M,SWAIN D L,et al. Characterizing the spatial scales of extreme daily precipitation in the United States[J]. Journal of Climate,2018,31(19):8023 doi: 10.1175/JCLI-D-18-0019.1
    [40] KARL T R,KNIGHT R W. Secular trends of precipitation amount,frequency,and intensity in the United States[J]. Bulletin of the American Meteorological Society,1998,79(2):231 doi: 10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2
    [41] 李艳,马百胜,杨宣. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境,2019,28(2):469
    [42] NITTA T. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. Journal of the Meteorological Society of Japan Ser II,1987,65(3):373 doi: 10.2151/jmsj1965.65.3_373
    [43] HUANG R H,SUN F Y. Impacts of the tropical western Pacific on the east Asian summer monsoon[J]. Journal of the Meteorological Society of Japan Ser II,1992,70(1B):243 doi: 10.2151/jmsj1965.70.1B_243
    [44] JEONG H I,LEE D Y,ASHOK K,et al. Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter[J]. Climate Dynamics,2012,39(1):475
    [45] WANG P,TAM C Y,XU K. El Niño-East Asian monsoon teleconnection and its diversity in CMIP5 models[J]. Climate Dynamics,2019,53(9/10):6417
    [46] LARKIN N K. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter[J]. Geophysical Research Letters,2005,32(16):L16705 doi: 10.1029/2005GL022860
    [47] KUMAR K K,RAJAGOPALAN B,HOERLING M,et al. Unraveling the mystery of Indian monsoon failure during el niño[J]. Science,2006,314(5796):115 doi: 10.1126/science.1131152
    [48] WENG H Y,BEHERA S K,YAMAGATA T. Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events[J]. Climate Dynamics,2009,32(5):663 doi: 10.1007/s00382-008-0394-6
  • 加载中
图(7)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  27
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-12
  • 录用日期:  2023-03-12
  • 网络出版日期:  2023-09-05

目录

    /

    返回文章
    返回