Current status and challenges of artificial intelligence empowering the development of psychological research
-
摘要: 面向心理学的研究对于创新型研究手段的需求,从数据收集和分析入手,剖析了人工智能技术在心理学研究中的应用趋势和潜在问题;梳理并分析了人工智能技术赋能心理学分支学科诸如认知神经科学、社会和消费心理学、精神病理学、心理测量学等的发展与应用;阐释了人工智能技术为心理学研究方法与范式变革所提供的技术支撑;探讨了数据驱动研究的局限性及大数据样本的有偏性,以及现阶段人工智能技术与心理学交叉融合的学科路径与未来融合的前景,以期为推动心理学与人工智能技术的深度交叉、双向赋能、协同发展提供参考.Abstract: This review focuses on the demand for innovative research methods in psychology, starting with data collection and analysis, and examines the application trends and potential issues of artificial intelligence technology in psychological research. It also explores the development and application of artificial intelligence technology in various sub-disciplines of psychology, including cognitive neuroscience, social and consumer psychology, psychopathology, and psychometrics. The review highlights the technical support provided by artificial intelligence technology for the transformation of research methods and paradigms in psychology. It also discusses the limitations of data-driven research and the bias of big data, as well as the current interdisciplinary path and future prospects of the intersection of artificial intelligence technology and psychology. Ultimately, the review is aimed to provide a reference for promoting the deep intersection, mutual empowerment, and collaborative development of psychology and artificial intelligence technology.
-
Key words:
- artificial intelligence /
- big data /
- multimodal data /
- machine learning /
- interdisciplinary integration
-
表 1 近年被开发并投入使用的人工智能BCI设备案例
产品名称 主要功能 发表年份 开发团队 开发国家 BrainGate[19] 捕捉和解码大脑信号,以控制外部设备 2023 Brown University 美国 Neuralink[20] 侵入式BCI改善大脑的认知和运动功能 2019 Neuralink Corporation 美国 Emotiv EPOC+[21] 脑机互动和情感识别 2021 Emotiv Inc. 美国 Muse[22] EEG检测大脑电波,辅助冥想 2021 InteraXon 加拿大 g.GAMMAbox[23] 用于辅助医疗和研究应用中的脑信号识别 2017 g.tec medical engineering 奥地利 OpenBCI[24] 智能化开源BCI平台 2018 OpenBCI 美国 -
[1] 林崇德. 心理学概论[M]. 北京: 人民教育出版社, 2016. [2] 任孝鹏, 向媛媛, 周阳, 等 基于微博大数据的中国人个体主义/集体主义的心理地图[J]. 内蒙古师范大学学报(哲学社会科学版)2017 46 6 59 [3] 赵小明, 杨轶娇, 张石清 面向深度学习的多模态情感识别研究进展[J]. 计算机科学与探索2022 16 7 1479 [4] 朱廷劭 人工智能助力心理学研究的应用场景[J]. 人民论坛·学术前沿2019 20 48 [5] RAIKOV A. Cognitive Semantics of Artificial Intelligence: A New Perspective[M]. Singapore: Springer Singapore, 2021 [6] ZAD S, HEIDARI M, JONES J H Jr, et al. Emotion detection of textual data: an interdisciplinary survey[C]//2021 IEEE World AI IoT Congress (AIIoT). May 10-13, 2021, Seattle, WA, USA. IEEE, 2021: 255[LinkOut] [7] MARIANI M M, PEREZ-VEGA R, WIRTZ J AI in marketing, consumer research and psychology: a systematic literature review and research agenda[J]. Psychology & Marketing2022 39 4 755 [8] LEE E E, TOROUS J, DE CHOUDHURY M, et al Artificial intelligence for mental health care: clinical applications, barriers, facilitators, and artificial wisdom[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging2021 6 9 856 [9] Ahmad F, Abbasi A, Li J L, et al A deep learning architecture for psychometric natural language processing[J]. ACM Transactions on Information Systems2020 38 1 1 [10] BIRBAUMER N, WEBER C, NEUPER C, et al Physiological regulation of thinking: brain-computer interface (BCI) research[J]. Progress in Brain Research2006 159 369 [11] 贺文韬 脑机接口技术综述[J]. 数字通信世界2018 1 ): 73, 78[12] BELL C J, SHENOY P, CHALODHORN R, et al Control of a humanoid robot by a noninvasive brain–computer interface in humans[J]. Journal of Neural Engineering2008 5 2 214 [13] Darestani M Z, Chaudhari A S, Heckel R. Measuring robustness in deep learning based compressive sensing[EB/OL]. [2023-02-01].https://proceedings.mlr.press/v139/darestani21a.html [14] MCCORMICK D A, NESTVOGEL D B, HE B J Neuromodulation of brain state and behavior[J]. Annual Review of Neuroscience2020 43 391 [15] HENRY R, DECKERT M, GURUVIAH V, et al Review of neuromodulation techniques and technological limitations[J]. IETE Technical Review2016 33 4 368 [16] COLE E J, STIMPSON K H, BENTZLEY B S, et al Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression[J]. American Journal of Psychiatry2020 177 8 716 [17] PHILLIPS A L, COLE E J, BENTZLEY B S, et al Stanford Accelerated Intelligent Neuromodulation Therapy (SAINT-TRD) induces rapid remission from treatment-resistant depression in a double-blinded, randomized, and controlled trial[J]. Brain Stimulation2020 13 6 1859 [18] NURSE E S, KAROLY P J, GRAYDEN D B, et al A generalizable brain-computer interface (BCI) using machine learning for feature discovery[J]. PLoS One2015 10 6 e0131328 [19] Rubin DB, Ajiboye AB, Barefoot L, Bowker M, Cash SS, Chen D, et al. Interim Safety Profile From the Feasibility Study of the BrainGate Neural Interface System[EB/OL]. [2023-02-01]. https://n.neurology.org/content/100/11/e1177.abstract [20] KULSHRESHTH A, ANAND A, LAKANPAL A. Neuralink- an elon musk start-up achieve symbiosis with artificial intelligence[C]//2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). October 18-19, 2019, Greater Noida, India. IEEE, 2020: 105 [21] HOSSAIN FARUK M J, VALERO M, SHAHRIAR H. An investigation on non-invasive brain-computer interfaces: emotiv epoc neuroheadset and its effectiveness[C]//2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). July 12-16, 2021, Madrid, Spain. IEEE, 2021: 580 [22] CANNARD C, WAHBEH H, DELORME A. Validating the wearable MUSE headset for EEG spectral analysis and Frontal Alpha Asymmetry[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). December 9-12, 2021, Houston, TX, USA. IEEE, 2022: 3603 [23] Toderean R, Chiuchisan I. Application of support vector machine for the classification of sensorimotor rhythms in brain computer interface. [EB/OL]. [2023-02-02]. https://ieeexplore.ieee.org/abstract/document/7995511/metrics#metrics [24] YOHANANDAN S A C, KIRAL-KORNEK I, TANG J B, et al. A robust low-cost EEG motor imagery-based brain-computer interface[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). July 18-21, 2018, Honolulu, HI, USA. IEEE, 2018: 5089 [25] 侯玉波. 社会心理学[M]. 4版. 北京: 北京大学出版社, 2018 [26] 潘逸沁, 骆方 社会称许性反应的测量与控制[J]. 心理科学进展2017 25 10 1664 [27] HERNÁNDEZ-GARCÍA I, GIMÉNEZ-JÚLVEZ T Characteristics of YouTube videos in Spanish on how to prevent COVID-19[J]. International Journal of Environmental Research and Public Health2020 17 13 4671 [28] VONDRICK C, PIRSIAVASH H, TORRALBA A. Anticipating visual representations from unlabeled video[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 98 [29] PAN W, WANG R J, DAI W Q, et al China public psychology analysis about COVID-19 under considering sina weibo data[J]. Frontiers in Psychology2021 12 713597 [30] Huang F, Ding H, Liu Z, Wu P, Zhu M, Li A, et al. How fear and collectivism influence public’s preventive intention towards COVID-19 infection: a study based on big data from the social media. BMC Public Health. 2020, 20(1): 1-9. [30] HUANG F, DING H M, LIU Z Y, et al. How fear and collectivism influence public’s preventive intention towards COVID-19 infection: a study based on big data from the social media[J]. BMC Public Health. 2020, 20(1): 1 [31] Kahle LR, Xie GX. Social values in consumer psychology[EB/OL]. [2023-02-02]. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203809570-31/social-values-consumer-psychology-lynn-kahle-guang-xin-xie [32] PRASAD B, GHOSAL I Forecasting buying intention through artificial neural network: an algorithmic solution on direct-to-consumer brands[J]. FIIB Business Review2022 11 4 405 [33] Parihar V, SURENDRA Y Comparative analysis of different machine learning algorithms to predict online shoppers’ behaviour[J]. International Journal of Advanced Networking and Applications2022 13 6 5169 [34] Kliestik T, Kovalova E, Lăzăroiu G Cognitive decision-making algorithms in data-driven retail intelligence: consumer sentiments, choices, and shopping behaviors[J]. Journal of Self-Governance and Management Economics2022 10 1 30 [35] 任萍, 汪悦, 刘冬予, 等 心理健康评估与干预的智能化应用[J]. 北京师范大学学报(社会科学版)2022 4 150 [36] 范尹晴, 王振 精神病理学的层级分类法研究与应用进展[J]. 中华精神科杂志2023 56 1 3 [37] KWONG A S F, MORRIS T T, PEARSON R M, et al Polygenic risk for depression, anxiety and neuroticism are associated with the severity and rate of change in depressive symptoms across adolescence[J]. Journal of Child Psychology and Psychiatry2021 62 12 1462 [38] XIONG H Y, ALIPANAHI B, LEE L J, et al RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science2015 347 6218 1254806 [39] MOHAMMED U, WANG Y J, MARC W S Artificial intelligence for precision medicine in neurodevelopmental disorders[J]. NPJ Digital Medicine2019 2 6 112 [40] NEMESURE M D, HEINZ M V, HUANG R, et al Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence[J]. Scientific Reports2021 11 1980 [41] 张厚粲, 余嘉元 中国的心理测量发展史[J]. 心理科学2012 35 3 514 [42] 骆方, 张厚粲 人格测验中作假的控制方法[J]. 心理学探新2007 27 4 78 [43] WALD R, KHOSHGOFTAAR T M, NAPOLITANO A, et al. Using twitter content to predict psychopathy[C]//2012 11th International Conference on Machine Learning and Applications. December 12-15, 2012, Boca Raton, FL, USA. IEEE, 2013: 394 [44] JACOBSON N C, SUMMERS B J, WILHELM S. Digital biomarkers of social anxiety severity: digital phenotyping using passive smartphone sensors (preprint) [EB/OL]. [2023-01-31]. https://www.researchgate.net/publication/341748235_Digital_Biomarkers_of_Social_Anxiety_Severity_Digital_Phenotyping_Using_Passive_Smartphone_Sensors_Preprint [45] Jacobson NC, Summers B, Wilhelm S. Digital biomarkers of social anxiety severity: digital phenotyping using passive smartphone sensors. 2020, 22(5): e16875 [46] KATHARINA S, VIJAY Y, SHALEV ARIEH Y, et al Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood[J]. Psychological Medicine2020 52 5 1 [47] MEIR P, ORAN B, DONIGER GLEN M, et al Multimodal immersive trail making-virtual reality paradigm to study cognitive-motor interactions[J]. Journal of Neuroengineering and Rehabilitation2021 18 1 82 [48] Dave, R, Sargeant, K, Vanamala, M, et al Review on Psychology Research Based on Artificial Intelligence Methodologies[J]. Journal of Computer and Communications2022 10 5 113 [49] MITCHELL L, FRANK M R, HARRIS K D, et al The geography of happiness: connecting twitter sentiment and expression, demographics, and objective characteristics of place[J]. PLoS One2013 8 5 e64417 [50] JENSEN E A Putting the methodological brakes on claims to measure national happiness through Twitter: methodological limitations in social media analytics[J]. PLoS One2017 12 9 e0180080 [51] ELRAGAL A, KLISCHEWSKI R Theory-driven or process-driven prediction? Epistemological challenges of big data analytics[J]. Journal of Big Data2017 4 1 1 -