Optical and electric control of spin and valley-polarized transport in magnetic WSe2 superlattice
-
摘要: 基于磁性WSe2超晶格系统,探讨了非共振圆偏振光与栅极电压及其对隧穿、谷极化及自旋极化的影响;发现了单层WSe2的弹道输运操纵以及基于磁性WSe2的NM/FM/NM结的周期性阵列量子输运的调控.结果表明:通过增加势垒的数量,圆偏振光临界值可消除透射能隙;圆偏振光和栅极电压可视为一个透射阀,也可用于控制自旋和谷极化的敏感旋钮;发现了在WSe2超晶格中的克莱因隧穿是自旋-谷相关的;自旋-谷极化可以利用栅极电压和圆偏振光来调整和转换.Abstract: In this paper, we considered the magnetic WSe2 superlattice system, explored the effects of non-resonant circularly polarized light and gate voltage on tunneling, valley polarization and spin polarization, the manipulation of ballistic transport in single-layer WSe2 and control of the quantum transport in the periodic array of NM/FM/NM junctions based on magnetic WSe2. The results show that the critical value of circularly polarized light can eliminate the transmission energy gap by increasing the number of potential barriers; The circularly polarized light and gate voltage can be regarded as a transmission valve and a sensitive knob for controlling the spin and valley polarization; Klein tunneling in WSe2 super lattice is spin-valley dependent; spin-valley polarization can be adjusted and converted by grid voltage and circularly polarized light.
-
Key words:
- magnetic WSe2 /
- superlattice /
- circularly polarized light /
- gate voltage /
- spin transport /
- valley polarized transport
-
图 1
$ {\boldsymbol{\varDelta}}_{\boldsymbol{\omega }}={\boldsymbol{\varDelta}}_{\boldsymbol{\omega }}^{\boldsymbol{c}} $ 、$ \boldsymbol{U}=6 $ eV、$ \boldsymbol{h}=0 $ 时的WSe2能带结构注:对于自旋向上的电子,在$ K\mathrm{、}{K}' $谷的$ {\varDelta}_{\omega }^{c} $分别是−0.955 eV和 0.745 eV;对自旋向下的电子,在$ K\mathrm{、}{K}' $谷的$ {\varDelta}_{\omega }^{c} $分别是−0.745 eV 和0.955 eV.
图 3
$ \boldsymbol{U}=6\mathbf{e}\mathbf{V}\mathbf{、}\boldsymbol{h}=0 $ 、$ {\boldsymbol{\varDelta}}_{\boldsymbol{\omega }}={\boldsymbol{\varDelta}}_{\boldsymbol{\omega }}^{\boldsymbol{c}} $ 时作为费米能量的$ {\boldsymbol{K}}^{\boldsymbol{\text{'}}} $ 谷和入射角函数的透射率等高线图注:左列和右列分别代表$ N=2 $和$ N=6 $ ; a、b、e和f中$ {\varDelta}_{\omega }^{c}=0.745 $eV;c、d、g和h中$ {\varDelta}_{\omega }^{c}=0.955 $ eV.
图 7
$ {\boldsymbol{\varDelta}}_{\boldsymbol{\omega }}=0 $ ,$ \boldsymbol{h}=0.5 $ eV,$ \boldsymbol{D}=20 $ nm,$ \boldsymbol{L}=10 $ nm,$ \boldsymbol{E}=0.95 $ eV,$ \boldsymbol{N}=2 $ 时,作为$ \boldsymbol{U} $ 函数的不同自旋谷的透射谱注: a~d分别显示了当$ N=2 $和$ 6 $时,在没有非共振光($ {\varDelta}_{\omega }=0 $)的情况下,所有具有自旋和谷特点的透射几率与$ U $的关系.
图 8
$ {\boldsymbol{\varDelta}}_{\boldsymbol{\omega }}=0 $ 、$ \boldsymbol{h}=0.5 $ eV、$ \boldsymbol{D}=20 $ nm、$ \boldsymbol{L}=10 $ nm、$ \boldsymbol{E}=0.95 $ eV、$ \boldsymbol{N}=6 $ 时作为$ \boldsymbol{U} $ 函数的不同自旋谷的透射谱注:a~d分别显示了当$ N=2 $和$ 6 $时,在没有非共振光($ {\varDelta}_{\omega }=0 $)的情况下,所有具有自旋和谷特点的透射几率与$ U $的关系.
-
[1] XU X D,YAO W,XIAO D,et al. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nature Physics,2014,10(5):343 doi: 10.1038/nphys2942 [2] ZIBOUCHE N,PHILIPSEN P,KUC A,et al. Transition-metal dichalcogenide bilayers:switching materials for spintronic and valleytronic applications[J]. Physical Review B,2014,90(12):125440 doi: 10.1103/PhysRevB.90.125440 [3] REYES-RETANA J A,CERVANTES-SODI F. Spin-orbital effects in metal-dichalcogenide semiconducting monolayers[J]. Scientific Reports,2016,6:24093 doi: 10.1038/srep24093 [4] ZHU Z Y,CHENG Y C,SCHWINGENSCHLÖGL U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B,2011,84(15):153402 doi: 10.1103/PhysRevB.84.153402 [5] XIAO D,LIU G B,FENG W X,et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters,2012,108(19):196802 doi: 10.1103/PhysRevLett.108.196802 [6] XIE L,CUI X D. Manipulating spin-polarized photocurrents in 2D transition metal dichalcogenides[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(14):3746 [7] HASHMI A,YAMADA S,YAMADA A,et al. Nonlinear dynamics of electromagnetic field and valley polarization in WSe2 monolayer[J]. Applied Physics Letters,2022,120(5):051108 doi: 10.1063/5.0077235 [8] ZENG H L,DAI J F,YAO W,et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology,2012,7(8):490 doi: 10.1038/nnano.2012.95 [9] TIAN H,CHIN M L,NAJMAEI S,et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research,2016,9(6):1543 doi: 10.1007/s12274-016-1034-9 [10] LEE H S,MIN S W,CHANG Y G,et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters,2012,12(7):3695 doi: 10.1021/nl301485q [11] LIU Y A,WU H,CHENG H C,et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes[J]. Nano Letters,2015,15(5):3030 doi: 10.1021/nl504957p [12] CUI X,LEE G H,KIM Y D,et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nature Nanotechnology,2015,10(6):534 doi: 10.1038/nnano.2015.70 [13] SUN J F,CHENG F. Spin and valley transport in monolayers of MoS2[J]. Journal of Applied Physics,2014,115(13):133703 doi: 10.1063/1.4870290 [14] LI H,SHAO J M,YAO D X,et al. Gate-voltage-controlled spin and valley polarization transport in a normal/ferromagnetic/normal MoS2 junction[J]. ACS Applied Materials & Interfaces,2014,6(3):1759 [15] REZANIA H,ABDI M,ASTINCHAP B,et al. The effects of spin-orbit coupling on optical properties of monolayer[Formula:see text]due to mechanical strains[J]. Scientific Reports,2023,13(1):1159 doi: 10.1038/s41598-023-28258-z [16] WU Q S,ZHANG S N,YANG S J. Transport of the graphene electrons through a magnetic superlattice[J]. Journal of Physics:Condensed Matter,2008,20(48):485210 doi: 10.1088/0953-8984/20/48/485210 [17] WANG L G,ZHU S Y. Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers[J]. Physical Review B,2010,81(20):205444 doi: 10.1103/PhysRevB.81.205444 [18] ZHANG Q T,CHAN K S,LI J B. Electrically controllable sudden reversals in spin and valley polarization in silicene[J]. Scientific Reports,2016,6:33701 doi: 10.1038/srep33701 [19] MISSAULT N,VASILOPOULOS P,VARGIAMIDIS V,et al. Spin- and valley-dependent transport through arrays of ferromagnetic silicene junctions[J]. Physical Review B,2015,92(19):195423 doi: 10.1103/PhysRevB.92.195423 [20] QIU X J,CAO Z Z,CHENG Y F,et al. Spin and valley-dependent electron transport through arrays of ferromagnet on monolayer MoS2[J]. Journal of Physics:Condensed Matter,2017,29(10):105301 doi: 10.1088/1361-648X/aa58c4 [21] QIU X J,LV Q,CAO Z Z. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction[J]. Superlattices and Microstructures,2018,117:449 doi: 10.1016/j.spmi.2018.03.082 [22] MAJIDI L,ASGARI R. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve[J]. Physical Review B,2014,90(16):165440 doi: 10.1103/PhysRevB.90.165440 [23] HAJATI Y,RASHIDIAN Z. Gate-controlled spin and valley polarization transport in a ferromagnetic/nonmagnetic/ferromagnetic silicene junction[J]. Superlattices and Microstructures,2016,92:264 doi: 10.1016/j.spmi.2016.02.032 [24] KHEZERLOU M,GOUDARZI H. Valley permitted Klein tunneling and magnetoresistance in ferromagnetic monolayer MoS2[J]. Superlattices and Microstructures,2015,86:243 doi: 10.1016/j.spmi.2015.07.054 [25] YU Y J,ZHOU Y F,WAN L H,et al. Photoinduced valley-polarized current of layered MoS2 by electric tuning[J]. Nanotechnology,2016,27(18):185202 doi: 10.1088/0957-4484/27/18/185202 [26] TAHIR M,MANCHON A,SCHWINGENSCHLÖGL U. Photoinduced quantum spin and valley Hall effects,and orbital magnetization in monolayer MoS2[J]. Physical Review B,2014,90(12):125438 doi: 10.1103/PhysRevB.90.125438 [27] SAITO Y,NAKAMURA Y,BAHRAMY M S,et al. Superconductivity protected by spin-valley locking in ion-gated MoS2[J]. Nature Physics,2016,12(2):144 doi: 10.1038/nphys3580 [28] MAK K F,MCGILL K L,PARK J,et al. The valley Hall effect in MoS2 transistors[EB/OL]. 2014:arXiv:1403.5039.https://arxiv.org/abs/1403.5039 [29] JONES A M,YU H Y,ROSS J S,et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2[J]. Nature Physics,2014,10(2):130 doi: 10.1038/nphys2848 [30] SRIVASTAVA A,SIDLER M,ALLAIN A V,et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2[J]. Nature Physics,2015,11(2):141 doi: 10.1038/nphys3203 [31] AIVAZIAN G,GONG Z R,JONES A M,et al. Magnetic control of valley pseudospin in monolayer WSe2[J]. Nature Physics,2015,11(2):148 doi: 10.1038/nphys3201 [32] TAHIR M,KRSTAJIĆ P M,VASILOPOULOS P. Magnetic and electric control of spin- and valley-polarized transport across tunnel junctions on monolayer WSe2[J]. Physical Review B,2017,95(23):235402 doi: 10.1103/PhysRevB.95.235402 [33] WANG Z Y,TANG C,SACHS R,et al. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect[J]. Physical Review Letters,2015,114:016603 doi: 10.1103/PhysRevLett.114.016603 [34] WANG D L,HUANG Z Y,ZHANG Y Y,et al. Spin-valley filter and tunnel magnetoresistance in asymmetrical silicene magnetic tunnel junctions[J]. Physical Review B,2016,93(19):195425 doi: 10.1103/PhysRevB.93.195425 [35] MIRERSHADI S,SATTARI F. Spin and valley dependent transport in strained silicene superlattice[J]. Physica E:Low-Dimensional Systems and Nanostructures,2020,115:113696 doi: 10.1016/j.physe.2019.113696 [36] SATTARI F,MIRERSHADI S. Spin and valley dependent transport in a monolayer MoS 2 superlattice with extrinsic Rashba spin-orbit interaction[J]. Journal of Magnetism and Magnetic Materials,2020,514 (16):167256 [37] YANG Q J,YUAN R Y,GUO Y. Valley switch effect based on monolayer WSe2 modulated by circularly polarized light and valley Zeeman field[J]. Journal of Physics D:Applied Physics,2019,52(33):335301 doi: 10.1088/1361-6463/ab2293 [38] HAJATI Y,ALIPOURZADEH M,MAKHFUDZ I. Spin- and valley-polarized transport and magnetoresistance in asymmetric ferromagnetic WSe2 tunnel junctions[J]. Physical Review B,2021,103(24):245435 doi: 10.1103/PhysRevB.103.245435 [39] ZENG H L,DAI J F,YAO W,et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology,2012,7(8):490 doi: 10.1038/nnano.2012.95 [40] DÓRA B,CAYSSOL J,SIMON F,et al. Optically engineering the topological properties of a spin Hall insulator[J]. Physical Review Letters,2012,108(5):056602 doi: 10.1103/PhysRevLett.108.056602 [41] LIU D N,GUO Y. Optoelectronic superlattices based on 2D transition metal dichalcogenides[J]. Applied Physics Letters,2021,118(12):123101 doi: 10.1063/5.0044509 -