• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超亮超新星光变特征和供能机制的统计分析

董晓菲 刘良端 高鹤

董晓菲, 刘良端, 高鹤. 超亮超新星光变特征和供能机制的统计分析[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023051
引用本文: 董晓菲, 刘良端, 高鹤. 超亮超新星光变特征和供能机制的统计分析[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023051
DONG Xiaofei, LIU Liangduan, GAO He. Statistical analysis of the light curve characteristics and energy sources of superluminous supernovae[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023051
Citation: DONG Xiaofei, LIU Liangduan, GAO He. Statistical analysis of the light curve characteristics and energy sources of superluminous supernovae[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023051

超亮超新星光变特征和供能机制的统计分析

doi: 10.12202/j.0476-0301.2023051
基金项目: 国家自然科学基金资助项目(12021003)
详细信息
    通讯作者:

    高鹤(1984—),男,教授,博士,博士生导师. 研究方向:高能天体物理. E-mail:gaohe@bnu.edu.cn

  • 中图分类号: P145.3

Statistical analysis of the light curve characteristics and energy sources of superluminous supernovae

  • 摘要: 统计了91颗贫氢超亮超新星的光变特征,并结合3种供能模型进行了蒙特卡罗模拟,以探究实际观测对其能源机制的约束. 结果显示:这些超亮超新星在g波段的平均峰值绝对星等为(−21.34±0.8)等,上升和下降时标分别分布在7~79 d和14~114 d,并呈现显著正相关;模拟结果表明磁星和相互作用机制都可能为大部分超亮超新星供能,在相互作用模型中,基于壳层分布假设的模拟结果与观测符合得更好. 国内各大巡天项目(如CSST、司天工程)未来将探测到更多高红移超亮超新星,以期为相关科研人员深入了解宇宙中的恒星演化和爆炸过程提供重要数据.

     

  • 图  1  Ⅰ型SLS的红移分布

    图  2  Ⅰ型SLS的g波段峰值绝对星等分布

    图  3  上升和下降时标分布

    图  4  上升与下降时标随红移的分布

    图  5  Ⅰ型SLS上升和下降时标的分布(b)、(c)以及二者的相关关系(a)

    图  6  放射性元素衰变模型(a)、磁星供能模型(b)、相互作用模型星风形式(c1),以及相互作用模型壳层形式(c2

  • [1] COOKE J, SULLIVAN M, GAL-YAM A, et alSuperluminous supernovae at redshifts of 2.05 and 3.90[J]. Nature20124917423228
    [2] PERLEY D A, QUIMBY R M, YAN L, et alHost-galaxy properties of 32 low-redshift superluminous supernovae from the palomar transient factory[J]. The Astrophysical Journal Letters2016830113
    [3] GAL-YAM AThe most luminous supernovae[J]. Annual Review of Astronomy and Astrophysics201957305
    [4] CHEVALIER R A, IRWIN C MShock breakout in dense mass loss: luminous supernovae[J]. The Astrophysical Journal Letters20117291L6
    [5] UMEDA H, NOMOTO K. How Much56Ni can be produced in core-collapse supernovae? evolution and explosions of 30–100MStars[J]. The Astrophysical Journal Letters200867321014
    [6] GAL-YAM A, MAZZALI P, OFEK E O, et alSupernova 2007bi as a pair-instability explosion[J]. Nature20094627273624
    [7] BARKAT Z, RAKAVY G, SACK NDynamics of supernova explosion resulting from pair formation[J]. Physical Review Letters19671810379
    [8] NICHOLL M, SMARTT S J, JERKSTRAND A, et alSlowly fading super-luminous supernovae that are not pair-instability explosions[J]. Nature20135027471346
    [9] WOOSLEY S EBright supernovae from magnetar birth[J]. The Astrophysical Journal Letters20107192L204
    [10] KASEN D, BILDSTEN LSupernova light curves powered by young magnetars[J]. The Astrophysical Journal Letters20107171245
    [11] DEXTER J, KASEN DSupernova light curves powered by fallback accretion[J]. The Astrophysical Journal Letters2013772130
    [12] SMITH N, MCCRAY RShell-shocked diffusion model for the light curve of SN 2006gy[J]. The Astrophysical Journal Letters20076711L17
    [13] NICHOLL M, SMARTT S J, JERKSTRAND A, et alOn the diversity of superluminous supernovae: ejected mass as the dominant factor[J]. Monthly Notices of the Royal Astronomical Society201545243869
    [14] VILLAR V A, BERGER E, METZGER B D, et alTheoretical models of optical transients. I. A broad exploration of the duration–luminosity phase space[J]. The Astrophysical Journal Letters2017849170
    [15] ANGUS C R, SMITH M, SULLIVAN M, et alSuperluminous supernovae from the dark energy survey[J]. Monthly Notices of the Royal Astronomical Society201948722215
    [16] LUNNAN R, CHORNOCK R, BERGER E, et alHydrogen-poor superluminous supernovae from the pan-STARRS1 medium deep survey[J]. The Astrophysical Journal Letters2018852281
    [17] DE CIA A, GAL-YAM A, A R B, et alLight curves of hydrogen-poor superluminous supernovae from the palomar transient factory[J]. The Astrophysical Journal Letters20188602100
    [18] CHEN Z H, YAN L, KANGAS T, et alThe hydrogen-poor superluminous supernovae from the zwicky transient facility phase I survey. I. light curves and measurements[J]. The Astrophysical Journal Letters2023943141
    [19] QUIMBY R M, YUAN F, AKERLOF C, et alRates of superluminous supernovae at z $\sim $ 0.2[J]. Monthly Notices of the Royal Astronomical Society20134311912
    [20] INSERRA C, SMARTT S JSuperluminous supernovae as standardizable candles and high-redshift distance probes[J]. The Astrophysical Journal2014796287
    [21] INSERRA C, SULLIVAN M, ANGUS C R, et alThe first Hubble diagram and cosmological constraints using superluminous supernovae[J]. Monthly Notices of the Royal Astronomical Society202150422535
    [22] MASCI F J, LAHER R R, RUSHOLME B, et alThe zwicky transient facility: data processing, products, and archive[J]. Publications of the Astronomical Society of the Pacific2019131995018003
    [23] YANG S, SOLLERMAN J. HAFFET: hybrid analytic flux FittEr for transients[EB/OL]. [2023-03-31].https://arxiv.org/abs/2302.02082
    [24] TONRY J L, STUBBS C W, LYKKE K R, et al. The pan-STARRS1 photometric system[EB/OL]. [2023-04-02].https://arxiv.org/abs/1203.0297
    [25] SCHLAFLY E F, FINKBEINER D PMeasuring reddening with Sloan digital sky survey stellar spectra and recalibrating sfd[J]. The Astrophysical Journal Letters20117372103
    [26] FITZPATRICK E L, MASSA DAn analysis of the shapes of interstellar extinction curves. V. the IR-through-UV curve morphology[J]. The Astrophysical Journal Letters20076631320
    [27] BLANTON M R, ROWEIS S. K-corrections and filter transformations in the ultraviolet, optical, and near-infrared[J]. The Astronomical Journal20071332734
    [28] AMBIKASARAN S, FOREMAN-MACKEY D, GREENGARD L, et alFast direct methods for Gaussian processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence2016382252
    [29] GAL-YAM ALuminous supernovae[J]. Science20123376097927
    [30] ARNETT E M, JORIS L, MITCHELL E, et alHydrogen-bonded complex formation. III. Thermodynamics of complexing by infrared spectroscopy and calorimetry[J]. Journal of the American Chemical Society19709282365
    [31] ARNETT W DOn the theory of type I supernovae[J]. The Astrophysical Journal Letters1979230L37
    [32] ARNETT W DType I supernovae. I - Analytic solutions for the early part of the light curve[J]. The Astrophysical Journal Letters1982253785
    [33] ZHANG B, MÉSZÁROS PGamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar[J]. The Astrophysical Journal Letters20015521L35
    [34] KANEKO Y, BOSTANCı Z F, GÖĞÜŞ E, et alShort gamma-ray bursts with extended emission observed with Swift/BAT and Fermi/GBM[J]. Monthly Notices of the Royal Astronomical Society20154521824
    [35] NICHOLL M, SMARTT S J, JERKSTRAND A, et allsq14bdq: a type ic super-luminous supernova with a double-peaked light curve[J]. The Astrophysical Journal Letters20158071L18
    [36] NICHOLL M, GUILLOCHON J, BERGER EThe magnetar model for type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT[J]. The Astrophysical Journal Letters2017850155
    [37] CHATZOPOULOS E, CRAIG WHEELER J, VINKO JGeneralized semi-analytical models of supernova light curves[J]. The Astrophysical Journal Letters20127462121
    [38] CHEN Z H, YAN L, KANGAS T, et alThe hydrogen-poor superluminous supernovae from the zwicky transient facility phase I survey. II. light-curve modeling and characterization of undulations[J]. The Astrophysical Journal Letters2023943142
  • 加载中
图(6)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  52
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 录用日期:  2023-05-18
  • 网络出版日期:  2023-07-14

目录

    /

    返回文章
    返回