Evaluation of plantation ecosystem services of Badaling National Forest Farm in Beijing
-
摘要: 人工林生态服务功能评估是应用生态学领域研究的热点,也是数字生态和林业高质量发展的需求,本文以北京市八达岭林场人工林生态系统(混交林、针叶林、阔叶林)和天然灌木林为研究对象,以北京市森林资源规划设计调查资料(2004、2009、2014年)和八达岭林场碳通量实时监测为基础数据源,通过野外调查及典型样方观测,开展人工林生态服务功能评价,旨在探究森林生态系统结构优化和功能提升的森林经营建议.结果表明:1)从2004—2014年八达岭林场针叶林和灌木林面积增长率分别为40.48%和3.32%,而阔叶林和混交林分别减少46.33%和3.57%,林场仍以混交林(710.67 hm2)和灌木林(1175.67 hm2)为主.2)从2004—2014年阔叶林中椴树逐渐成为主要树种,2014年涵养水源量较2009年提高了1.55倍.油松作为混交林的优势树种,其涵养水源实物量2014年较2004年提高了67%.灌木林在2014年出现了较大幅度增加,涵养水源实物量较2004年都提高了1倍左右,其价值量也相应增加.固碳、释氧、提供负氧离子、滞尘和吸收污染物等调节服务功能及其价值均表现为混交林最高,针叶林次之,阔叶林最低(P>0.05);各林分服务功能价值量与功能实物量变化趋势相同,灌木林固土和保肥功能优于其余3种林分,混交林和针叶林营养物质积累量和生物多样性优于阔叶林.3)从2004—2014年土壤保育(92.9%)、生物多样性(4.3%)及涵养水源功能(2.3%)对人工林生态服务功能的贡献率大于固碳释氧(0.4%)、森林防护(0.04%)和净化大气环境(0.02%)功能,其中混交林和针叶林对人工林生态服务功能贡献大于阔叶林和灌木林.由此可见,林分类型和林分面积是影响人工林生态服务功能强弱的主要决定因素.八达岭人工林经营应持续保持土壤保育功能,在保证生物多样性的情况下,应注重固碳增汇功能,建议将现有林分多调整为混交林和灌木林,营造“异龄复层”的理想人工林生态系统,逐渐提高北京八达岭人工林生态服务功能.Abstract: The evaluation of the service function of artificial forest ecosystems is a hot topic in the field of applied ecology, and it is also a demand for high-quality development of digital ecology and forestry,theBadaling forest plantation ecosystem (mixed forest, coniferous forest and broad-leaved forest) as well as shrub forest as the research object, in Beijing. The second type of forest resources inventory data of Beijing (in 2004, 2009, 2014) and Badaling forestry carbon flux which real-time monitoring as data sources, and through field investigation and observation of typical samples as well as sample analysis to evaluate the ecosystem service function. The purpose of this study was to explore the forest management suggestions for optimizing the structure and improving the function of forest ecosystem.The analysis and evaluated results show: from 2004 to 2014, (1) the area growth rate of coniferous forest and shrub forest in Badaling forest farm was 40.3% and 174%, respectively, while that of broadleaved forest and mixed forest decreased to 36.31% and 11.61%, respectively. The forest farm was still dominated by coniferous forest and mixed forest, and these two forest area was 642 hm2 and 632.73 hm2, respectively in 2014. (2) Linden trees in broadleaf forests gradually became the main tree species, and the water conservation in 2014 increased by 1.55 times compared with 2009. As the dominant tree species in mixed forests, the physical amount of water conservation in Pinus tabulara increased by 67% in 2014 compared with 2004. In 2014, the shrub forest showed a large increase, and the physical amount of water conservation increased by about 1 times compared with 2004, and its value also increased accordingly. The functions and values of regulating services which carbon sequestration, oxygen release, negative oxygen ion supply, dust retention and pollutant absorption were in the order of mixed forest highest, coniferous forest follow,broadleaf forest least (P > 0.05).The value of service function of each stand had the same trend as that of functional substance. The soil fixation and fertilizer conservation functions of shrub forest were better than those of the other three stands (mixed forest, coniferous forest, broad-leaved forest, shrub forest), and the nutrient accumulation and biodiversity conservation of mixed forest and coniferous forest were better than those of broad-leaved forest. (3) The contribution of soil conservation (92.9%), biodiversity conservation (4.3%) and water conservation (2.3%) to ecosystem services more than carbon sequestration and oxygen release (0.4%), forest protection (0.04%) and air purification (0.02%). The contribution of mixed forest and coniferous forest to plantation ecosystem services was greater than that of broad-leaved forest and shrub forest. Thus, stand types and forest area are the main determinants of ecosystem service function of plantation ecosystem. The management of plantation should be guided by soil an water conservation function, on the condition of ensuring biodiversity, attention should be paid to the function of carbon sequestration and sequestration,the existing stand should be adjusted to mixed forest and shrub forest, so as to construct an ideal plantation ecosystem with different age and multi-layer, and gradually improve ecosystem service functions of Badaling plantations in Beijing.
-
表 1 八达岭林场人工林生态服务功能评估指标
一级服务功能 二级服务功能 评估指标 调节服务 涵养水源 涵养水源实物量及价值量 固碳释氧 植被固碳实物量及价值量、土壤固碳实物量及价值量、植被释氧实物量及价值量 森林防护 热岛效应实物量及价值量 净化大气环境 提供负氧离子数量、吸收SO2、吸收氮氧化物、吸收氟化物、滞尘等实物量及价值量 支持功能 土壤保育 固土保肥(氮、磷、钾流失量)实物量及价值量 营养物质累积 林木营养积累(固氮/磷/钾量)实物量及价值量 生物多样性保护 生物多样性 生物多样性保护价值量 -
[1] LIU Z Q,JIA G D,YU X X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain[J]. Agriculture,Ecosystems & Environment,2020,287:106697. [2] 范玉龙,胡楠,丁圣彦,等. 陆地生态系统服务与生物多样性研究进展[J]. 生态学报,2016,36(15):4583. [3] 韩士杰,王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报,2016,38(4):1. doi: 10.13332/j.1000-1522.20160046 [4] 侯贵荣,余新晓,刘自强,等. 不同降雨强度下北京山区典型林地土壤水分时空变化特征[J]. 水土保持学报,2017,31(3):209. doi: 10.13870/j.cnki.stbcxb.2017.03.036 [5] 侯贵荣,毕华兴,魏曦,等. 黄土残塬沟壑区3种林地枯落物和土壤水源涵养功能[J]. 水土保持学报,2018,32(2):357. doi: 10.13870/j.cnki.stbcxb.2018.02.052 [6] ANDEREGG W R L,SCHWALM C,BIONDI F,et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science,2015,349(6247):528. doi: 10.1126/science.aab1833 [7] YU E X,ZHANG M F,XU Y L,et al. The development and application of a GIS-based tool to assess forest landscape restoration effects on water conservation capacity[J]. Forests,2021,12(9):1291. doi: 10.3390/f12091291 [8] BEKIN N,PROIS Y,LARONNEJ B,et al. The fuzzy effect of soil conservation practices on runoff and sediment yield from agricultural lands at the catchment scale[J]. CATENA,2021,207:105710. doi: 10.1016/j.catena.2021.105710 [9] 陈高路,陈林,庞丹波,等. 贺兰山10种典型植物固碳释氧能力研究[J]. 水土保持学报,2021,35(3):206. doi: 10.13870/j.cnki.stbcxb.2021.03.029 [10] 周笛轩,林永标,汪雁佳,等. 南亚热带不同人工林生态系统服务功能评估[J]. 生态环境学报,2021,30(5):907. doi: 10.16258/j.cnki.1674-5906.2021.05.003 [11] 刘胜涛,牛香,王兵,等. 宁夏贺兰山自然保护区森林生态系统净化大气环境功能[J]. 生态学杂志,2019,38(2):420. doi: 10.13292/j.1000-4890.201902.029 [12] MARTINUZZI S,RADELOFFV C,PASTUR G M,et al. Informing forest conservation planning with detailed human footprint data for Argentina[J]. Global Ecology and Conservation,2021,31:e01787. doi: 10.1016/j.gecco.2021.e01787 [13] 马履一,李春义,王希群,等. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J]. 林业科学,2007,43(5):1. doi: 10.3321/j.issn:1001-7488.2007.05.001 [14] LIU W Y,FANG B S,HSIEH C M. Evaluating the recreation value of Alishan national forest recreation area in Taiwan [J]. Forests,2021,12(9) :1245 doi: 10.3390/f12091245 [15] HOLDREN J P,EHRLICH P R. Human population and the global environment[J]. American Scientist,1974,62(3):282. [16] LAWTON J H. DAILY G C (Ed. ). Nature’s services. Societal dependence on natural ecosystems[M]. Washington,DC:Island Press,1997 [17] 巩杰,燕玲玲,徐彩仙,等. 近30年来中美生态系统服务研究热点对比分析:基于文献计量研究[J]. 生态学报,2020,40(10):3537. [18] 刘焱序,傅伯杰. 景观多功能性:概念辨析、近今进展与前沿议题[J]. 生态学报,2019,39(8):2645. [19] 魏曦,梁文俊,毕华兴,等. 晋西黄土区油松林分结构与水土保持功能的多因子复合关系[J]. 林业科学研究,2020,33(3):39. doi: 10.13275/j.cnki.lykxyj.2020.03.005 [20] 魏曦. 晋西黄土区典型人工林分结构与水土保持功能耦合关系研究[D]. 北京:北京林业大学,2018. [21] 赵昊天. 眉山市土地利用动态变化及趋势预测研究[D]. 成都:成都理工大学,2020. [22] 李扬. 吴起县退耕还林前后土地利用变化研究[D]. 北京:北京林业大学,2010. [23] 邓元亮. 湖北省耕地资源及其生态系统服务功能研究[D]. 武汉:华中农业大学,2009. [24] 国家林业局. 中华人民共和国林业行业标准. LY/T 1721-2008:森林生态系统服务功能评估规范. 中国标准出版社,北京. 2008. [25] 南洋. 北京地区森林火灾发生规律及变化趋势研究[D]. 北京:北京林业大学,2018. [26] 张衎. 北京市平原地区森林资源现状评价研究[D]. 北京:中国林业科学研究院,2016. [27] 王娇月,邴龙飞,尹岩,等. 湿地生态系统服务功能及其价值核算:以福州市为例[J]. 应用生态学报,2021,32(11):3824. [28] 马慧强,杨俊,李哲. 太原市城市复合生态系统调节服务时空格局演化及驱动机制研究[J]. 地理科学,2021,41(3):463. doi: 10.13249/j.cnki.sgs.2021.03.011 [29] HOU G R,BI H X,YUXX,etal. A vegetation configuration pattern with a high-efficiency purification ability for TN,TP,AN,AP,and COD based on comprehensive assessment results[J]. Scientific Reports,2019,9:2427. doi: 10.1038/s41598-018-38097-y [30] HOU G R,BI H X,HUO Y M,etal. Determining the optimal vegetation coverage for controlling soil erosion in Cynodondactylon grassland in North China[J]. Journal of Cleaner Production,2020,244:118771. doi: 10.1016/j.jclepro.2019.118771 [31] SCHNEIDER F D,MORSDORF F,SCHMID B,etal. Mapping functional diversity from remotely sensed morphological and physiological forest traits[J]. Nature Communications,2017,8:1441. doi: 10.1038/s41467-017-01530-3 [32] 李芸,王轶夫,孙玉军,等. 吉林省落叶松林净初级生产力时空特征及其对气候变化的响应[J]. 生态学报,2022,42(3):947 [33] 刘自强,余新晓,贾国栋,等. 北京山区侧柏和栓皮栎的水分利用特征[J]. 林业科学,2016,52(9):22. [34] 刘自强,余新晓,贾国栋,等. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学,2018,54(7):16. doi: 10.11707/j.1001-7488.20180702 [35] 刘自强,余新晓,娄源海,等. 北京山区侧柏水分利用策略[J]. 生态学报,2017,37(11):3697. [36] HOU G R,BI H X,WANG N,etal. Optimizing the stand density of robiniapseudoacacia L. forests of the loess plateau,China,based on response to soil water and soil nutrient[J]. Forests,2019,10(8):663. doi: 10.3390/f10080663 [37] 赵匡记. 华北落叶松人工林树干CO2通量时空变异与调控机理研究[D]. 北京:北京林业大学,2020. [38] ZHAO K J,DONG B Q,JIA Z K,etal. Effect of climatic factors on the temporal variation of stem respiration in Larixprincipis-rupprechtii Mayr[J]. Agricultural and Forest Meteorology,2018,248:441. doi: 10.1016/j.agrformet.2017.10.033 [39] ZHAO K J,ZHENG M X,FAHEY T J,etal. Vertical gradients and seasonal variations in the stem CO2efflux of Larixprincipis-rupprechtii Mayr[J]. Agricultural and Forest Meteorology,2018,262:71. doi: 10.1016/j.agrformet.2018.07.003 -