Research Progress on Protein phosphorylation Modification and its Role in Regulating Cell Cycle Progression
-
摘要: 细胞周期是真核生物实现细胞分裂与增殖、从母代向子代传递遗传信息的连续过程.真核细胞通过蛋白质水平的周期性调控完成细胞的分裂与增殖,细胞周期的紊乱常与肿瘤等疾病密切相关.蛋白质磷酸化修饰是细胞周期进程中一种主要的调控方式,可以改变蛋白质的分子结构,影响其与其他分子间的相互作用,从而调节相关分子的生物学活性及功能.细胞周期相关蛋白的磷酸化与非磷酸化状态的改变犹如“分子开关”,精细地控制着周期进程和细胞分裂系列事件.周期相关蛋白质的多位点磷酸化机制研究是磷酸化研究的一个热点.本文综合评述细胞周期调控进程中部分重要蛋白的磷酸化修饰机制,总结了近年来细胞周期领域中蛋白质磷酸化修饰方面的新发现、新突破,为进一步深入理解蛋白质磷酸化及细胞周期调控机制提供参考.Abstract: The cell cycle is a continuous process of cell division and proliferation in eukaryotes, transmitting genetic materials from parental generation to filial generation. Eukaryotic cells complete cell division and proliferation through periodic regulation at the protein molecular level, and the cell cycle disorder is usually closely related to cancer and other diseases. Protein phosphorylation is a major regulation mode in the process of cell cycle, which can change the molecular structure of protein, affect its interaction with other molecules, and thus regulate the biological activity and function of related molecules. The changes in the phosphorylation and non-phosphorylation states of cell cycle related proteins are like “molecular switches”, finely controlling cell cycle progression and cell division events. The study of multisite phosphorylation for cell cycle related proteins is a hotspot in the field of protein phosphorylation. This article provides a comprehensive review of the phosphorylation modification mechanisms of some important proteins in the process of cell cycle regulation. It summarizes the novel discoveries and breakthroughs in protein phosphorylation modification in the field of cell cycle in recent years, providing reference for further understanding of protein phosphorylation and cell cycle regulation mechanisms.
-
Key words:
- protein phosphorylation /
- kinase /
- cell cycle /
- protein dephosphorylation /
- phosphatase
-
图 1 过程式磷酸化蛋白和超位移磷酸化蛋白在Phos-tag™ SDS-PAGE中泳动情况的模式
a. 发生过程式磷酸化的蛋白因分子间磷酸化程度不均一,常在Phos-tag™ SDS-PAGE表现为多条磷酸化蛋白条带;b. 发生超位移磷酸化蛋白因各个分子均磷酸化程度较高,在短时间内所有蛋白分子磷酸化程度呈现均一性,常在Phos-tag™ SDS-PAGE中表现出单一条带.这里的Phos-tag™(也称Phosbind)是在中性pH条件下(生理pH)能特异性结合磷酸离子的一种功能性双环金属络合物.Phos-tag™ Acrylamide可用于磷蛋白的电泳分离,Phos-tag™ Biotin可用于磷蛋白的Western blot检测,Phos-tag™ Agarose可用于磷蛋白纯化,Phos-tag™ Mass分析试剂盒可用于磷蛋白质谱(MALDI-TOF/MS)检测.由于Phos-tag捕获磷酸基团的专门特性,Phos-tag磷酸亲和分析法获得的蛋白磷酸化分析结果可靠性强,代表了蛋白质磷酸化研究的一项技术发展.
表 1 部分M期发生超位移磷酸化的人类蛋白
蛋白名称 间期功能 M期功能 参考文献 Bora 核仁组织中心成员 激活AURKA和Plk1 [52] NUP35 核孔组成蛋白 调控纺锤体组装和染色体定位 [53] NUP98 核孔组成蛋白 调控纺锤体极性 [54] TPR 核孔组成蛋白 调控纺锤体检验点 [55] CENPF 核基质组成蛋白 M期着丝粒组成蛋白 [56] CENPT 核体组成蛋白 M期着丝粒组成蛋白 [57] INCENP 核质和核体的组成蛋白 染色体过客复合物组成蛋白 [58] Ki-67 核质和核仁的组成蛋白 包裹染色体的周围区域 [59] NuMA1 核基质组成蛋白 与有丝分裂纺锤极基质相关 [60] YAP1 转录激活 调控纺锤体检验点 [61] 53BP1 DNA损伤应答 动粒有丝分裂检查点信号 [62] BRCA1 DNA损伤应答 调控纺锤体组装 [63] Paxillin 黏着斑组成蛋白 促进双极性纺锤体形成 [64] Zyxin 黏着斑组成蛋白 与有丝分裂器有关 [65] Anillin 核内actin结合蛋白 调控胞质分裂 [66] MAP7 稳定微管 控制纺锤体长度 [67] BCL9 Wnt信号通路成员 调控纺锤体组装 [68] MINK1 信号通路激酶 调控胞质分裂 [69] STIM1 调控内质网结构和功能 阻隔内质网与纺锤体的结合 [70] Dynactin 1 Dynein驱动的囊泡运输 纺锤体定向 [71] -
[1] MORGAN D. The Cell Cycle: Principles of Control (Primers in Biology)[M]. London: New Science Press; 2007 [2] NOVÁK B, TYSON J J Mechanisms of signalling-memory governing progression through the eukaryotic cell cycle[J]. Current Opinion in Cell Biology2021 69 7 16 [3] STALLAERT W, KEDZIORA K M, CHAO H X, et al Bistable switches as integrators and actuators during cell cycle progression[J]. FEBS Letters2019 593 20 2805 2816 [4] 梁前进 细胞器不依赖于DNA的复制: 中心体自主复制解读[J]. 科学通报2017 62 13 1333 1345 [5] POON R Y C Cell cycle control: a system of interlinking oscillators[J]. Methods in Molecular Biology2016 1342 3 19 [6] BASU S, GREENWOOD J, JONES A W, et al Core control principles of the eukaryotic cell cycle[J]. Nature2022 607 7918 381 386 [7] SHARMA K, D’SOUZA R C J, TYANOVA S, et al Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and ser/thr-based signaling[J]. Cell Reports2014 8 5 1583 1594 [8] FLOYD B M, DREW K, MARCOTTE E M Systematic identification of protein phosphorylation-mediated interactions[J]. Journal of Proteome Research2021 20 2 1359 1370 [9] MANDELL D J, CHORNY I, GROBAN E S, et al Strengths of hydrogen bonds involving phosphorylated amino acid side chains[J]. Journal of the American Chemical Society2007 129 4 820 827 [10] MANNING G, WHYTE D B, MARTINEZ R, et al The protein kinase complement of the human genome[J]. Science2002 298 5600 1912 1934 [11] SACCO F, PERFETTO L, CASTAGNOLI L, et al The human phosphatase interactome: an intricate family portrait[J]. FEBS Letters2012 586 17 2732 2739 [12] LAD C, WILLIAMS N H, WOLFENDEN R The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases[J]. Proceedings of the National Academy of Sciences of the United States of America2003 100 10 5607 5610 [13] HUNTER T Why nature chose phosphate to modify proteins[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences2012 367 1602 2513 2516 [14] HUNTER T A journey from phosphotyrosine to phosphohistidine and beyond[J]. Molecular Cell2022 82 12 2190 2200 [15] CUI F F, QIAN X H, YING W T Integrated strategy for unbiased profiling of the histidine phosphoproteome[J]. Analytical Chemistry2021 93 47 15584 15589 [16] BUCHKOVICH K, DUFFY L A, HARLOW E The retinoblastoma protein is phosphorylated during specific phases of the cell cycle[J]. Cell1989 58 6 1097 1105 [17] DOWDY S F, HINDS P W, LOUIE K, et al Physical interaction of the retinoblastoma protein with human D cyclins[J]. Cell1993 73 3 499 511 [18] HINDS P W, MITTNACHT S, DULIC V, et al Regulation of retinoblastoma protein functions by ectopic expression of human cyclins[J]. Cell1992 70 6 993 1006 [19] STEVAUX O, DYSON N J A revised picture of the E2F transcriptional network and RB function[J]. Current Opinion in Cell Biology2002 14 6 684 691 [20] SANIDAS I, MORRIS R, FELLA K A, et al A code of mono-phosphorylation modulates the function of RB[J]. Molecular Cell2019 73 5 ): 9851000. e1006[21] GUBERN A, JOAQUIN M, MARQUÈS M, et al The N-terminal phosphorylation of RB by p38 bypasses its inactivation by CDKs and prevents proliferation in cancer cells[J]. Molecular Cell2016 64 1 25 36 [22] INOUE Y, KITAGAWA M, TAYA Y Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage[J]. The EMBO Journal2007 26 8 2083 2093 [23] NAIR J S, HO A L, TSE A N, et al Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780[J]. Molecular Biology of the Cell2009 20 8 2218 2228 [24] PARKER M W, BOTCHAN M R, BERGER J M Mechanisms and regulation of DNA replication initiation in eukaryotes[J]. Critical Reviews in Biochemistry and Molecular Biology2017 52 2 107 144 [25] NISHITANI H, SUGIMOTO N, ROUKOS V, et al Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis[J]. The EMBO Journal2006 25 5 1126 1136 [26] HOSSAIN M, BHALLA K, STILLMAN B Multiple, short protein binding motifs in ORC1 and CDC6 control the initiation of DNA replication[J]. Molecular Cell2021 81 9 1951 1969 [27] FENG X, NOGUCHI Y, BARBON M, et al The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6[J]. Nature Communications2021 12 3883 [28] HONEY S, FUTCHER B Roles of the CDK phosphorylation sites of yeast Cdc6 in chromatin binding and rereplication[J]. Molecular Biology of the Cell2007 18 4 1324 1336 [29] MCGRATH D A, BALOG E R M, KÕIVOMÄGI M, et al Cks confers specificity to phosphorylation-dependent CDK signaling pathways[J]. Nature Structural & Molecular Biology2013 20 12 1407 1414 [30] ÖRD M, VENTA R, MÖLL K, et al Cyclin-specific docking mechanisms reveal the complexity of M-CDK function in the cell cycle[J]. Molecular Cell2019 75 1 76 -89. e73[31] KÕIVOMÄGI M, ORD M, IOFIK A, et al Multisite phosphorylation networks as signal processors for Cdk1[J]. Nature Structural & Molecular Biology2013 20 12 1415 1424 [32] VENTA R, VALK E, ÖRD M, et al A processive phosphorylation circuit with multiple kinase inputs and mutually diversional routes controls G1/S decision[J]. Nature Communications2020 11 1836 [33] PATWARDHAN P, MILLER W T Processive phosphorylation: mechanism and biological importance[J]. Cellular Signalling2007 19 11 2218 2226 [34] GUNAWARDENA J Multisite protein phosphorylation makes a good threshold but can be a poor switch[J]. Proceedings of the National Academy of Sciences of the United States of America2005 102 41 14617 14622 [35] SHA W, MOORE J, CHEN K, et al . Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts[J]. Proceedings of the National Academy of Sciences of the United States of America2003 100 3 975 980 [36] KUMAGAI A, DUNPHY W G . Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts[J]. Science1996 273 5280 1377 1380 [37] WANG R N, HE G G, NELMAN-GONZALEZ M, et al Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition[J]. Cell2007 128 6 1119 1132 [38] WANG R N, JUNG S Y, WU C F, et al Direct roles of the signaling kinase RSK2 in Cdc25C activation during Xenopus oocyte maturation[J]. Proceedings of the National Academy of Sciences of the United States of America2010 107 46 19885 19890 [39] MUELLER P R, COLEMAN T R, KUMAGAI A, et al Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15[J]. Science1995 270 5233 86 90 [40] MUELLER P R, COLEMAN T R, DUNPHY W G Cell cycle regulation of a Xenopus Wee1-like kinase[J]. Molecular Biology of the Cell1995 6 1 119 134 [41] MOCHIDA S, MASLEN S L, SKEHEL M, et al Greatwall phosphorylates an inhibitor of protein phosphatase 2Α that is essential for mitosis[J]. Science2010 330 6011 1670 1673 [42] GHARBI-AYACHI A, LABBÉ J C, BURGESS A, et al The substrate of greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A[J]. Science2010 330 6011 1673 1677 [43] DEPHOURE N, ZHOU C S, VILLÉN J, et al A quantitative atlas of mitotic phosphorylation[J]. Proceedings of the National Academy of Sciences of the United States of America2008 105 31 10762 10767 [44] TAN T, WU C F, LIU B Y, et al Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators[J]. Molecular Biology of the Cell2022 33 12 ar115 [45] GEORGI A B, STUKENBERG P T, KIRSCHNER M W Timing of events in mitosis[J]. Current Biology2002 12 2 105 114 [46] TRUNNELL N B, POON A C, KIM S Y, et al Ultrasensitivity in the regulation of Cdc25C by Cdk1[J]. Molecular Cell2011 41 3 263 274 [47] INOUE D, SAGATA N The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs[J]. The EMBO Journal2005 24 5 1057 1067 [48] VILLENEUVE J, SCARPA M, ORTEGA-BELLIDO M, et al MEK1 inactivates Myt1 to regulate Golgi membrane fragmentation and mitotic entry in mammalian cells[J]. The EMBO Journal2013 32 1 72 85 [49] PALMER A A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1[J]. The EMBO Journal1998 17 17 5037 5047 [50] MOCHIDA S, RATA S, HINO H, et al Two bistable switches govern M phase entry[J]. Current Biology2016 26 24 3361 3367 [51] VIGNERON S, GHARBI-AYACHI A, RAYMOND A A, et al Characterization of the mechanisms controlling Greatwall activity[J]. Molecular and Cellular Biology2011 31 11 2262 2275 [52] VIGNERON S, SUNDERMANN L, LABBÉ J C, et al Cyclin A-cdk1-dependent phosphorylation of bora is the triggering factor promoting mitotic entry[J]. Developmental Cell2018 45 5 ): 637650. e637[53] CHEN F, JIAO X F, ZHANG J Y, et al Nucleoporin35 is a novel microtubule associated protein functioning in oocyte meiotic spindle architecture[J]. Experimental Cell Research2018 371 2 435 443 [54] LAURELL E, BECK K, KRUPINA K, et al Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry[J]. Cell2011 144 4 539 550 [55] RAJANALA K, SARKAR A, JHINGAN G D, et al. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function[J]. Journal of Cell Science, 2014, 127(Pt 16): 3505-3520 [56] HUSSEIN D, TAYLOR S S. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis[J]. Journal of Cell Science, 2002, 115(Pt 17): 3403-3414 [57] WATANABE R, HARA M, OKUMURA E I, et al CDK1-mediated CENP-C phosphorylation modulates CENP-a binding and mitotic kinetochore localization[J]. Journal of Cell Biology2019 218 12 4042 4062 [58] HONDA R, KÖRNER R, NIGG E A Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis[J]. Molecular Biology of the Cell2003 14 8 3325 3341 [59] ENDL E, GERDES J Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis[J]. Journal of Cellular Physiology2000 182 3 371 380 [60] SPARKS C A, FEY E G, VIDAIR C A, et al. Phosphorylation of numa occurs during nuclear breakdown and not mitotic spindle assembly[J]. Journal of Cell Science, 1995, 108(pt 11): 3389-3396 [61] YANG S P, ZHANG L, CHEN X C, et al Oncoprotein YAP regulates the spindle checkpoint activation in a mitotic phosphorylation-dependent manner through up-regulation of BubR1[J]. The Journal of Biological Chemistry2015 290 10 6191 6202 [62] BENADA J, BURDOVÁ K, LIDAK T, et al Polo-like kinase 1 inhibits DNA damage response during mitosis[J]. Cell Cycle2015 14 2 219 231 [63] HSU L C, WHITE R L BRCA1 is associated with the centrosome during mitosis[J]. Proceedings of the National Academy of Sciences of the United States of America1998 95 22 12983 12988 [64] YAMAKITA Y, TOTSUKAWA G, YAMASHIRO S, et al Dissociation of FAK/p130(CAS)/c-Src complex during mitosis: role of mitosis-specific serine phosphorylation of FAK [J]. Journal of cell biology1999 144 2 315 324 [65] HIROTA T, MORISAKI T, NISHIYAMA Y, et al Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor[J]. Journal of Cell Biology2000 149 5 1073 1086 [66] KIM H, JOHNSON J M, LERA R F, et al Anillin phosphorylation controls timely membrane association and successful cytokinesis[J]. PLoS Genetics2017 13 1 e1006511 [67] MASSON D, KREIS T E Binding of E-MAP-115 to microtubules is regulated by cell cycle-dependent phosphorylation[J]. Journal of Cell Biology1995 131 4 1015 1024 [68] CHEN J X, RAJASEKARAN M, XIA H P, et al CDK 1-mediated BCL 9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling[J]. The EMBO Journal2018 37 20 e99395 [69] HYODO T, ITO S, HASEGAWA H, et al Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis[J]. Journal of Biological Chemistry2012 287 30 25019 25029 [70] SMYTH J T, PETRANKA J G, BOYLES R R, et al Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis[J]. Nature Cell Biology2009 11 12 1465 1472 [71] HUANG C Y F, CHANG C P B, HUANG C L, et al M phase phosphorylation of cytoplasmic dynein intermediate chain and p150Glued[J]. Journal of Biological Chemistry1999 274 20 14262 14269 [72] FISHER D, KRASINSKA L, COUDREUSE D, et al Phosphorylation network dynamics in the control of cell cycle transitions[J]. Journal of Cell Science2012 125 20 4703 4711 -