Analysis on the Characteristics of Water, Energy and Food Network in Guangdong Province
-
摘要: 广东省人口和产业高度集聚,对水资源-能源-粮食(WEF)依赖程度高,资源供需矛盾日益凸显,合理配置WEF资源,实现资源可持续利用具有重要现实意义.本研究基于复杂网络方法,构建广东省2007、2012、2017年的WEF资源网络模型,通过探索网络拓扑性质,挖掘网络关键节点和关键路径,作为资源优化配置的重点关注对象.结果表明:(1)广东省WEF资源网络具备小世界属性,能源网络的小世界属性最强,水资源网络最弱,关键节点和关键边的调控均会对WEF资源网络形成较大影响.(2)农业、食品和烟草业、化学产品业、电力、热力的生产和供应业、建筑业、通信设备、计算机和其他电子设备制造业等关键节点具备较大点强度,其资源调控对广东省水资源、能源、粮食的节约效应显著.(3)电气机械和器材制造业、建筑业、通信设备、计算机和其他电子设备制造业在WEF资源网络中处于枢纽位置,其资源节约效应可快速传递至整个网络.(4)农业→食品和烟草业、农业→纺织业、食品和烟草→住宿和餐饮业等边频繁出现于WEF资源网络的关键路径之中,改变其资源流通量,可显著改变所在关键路径甚至整个WEF资源网络的流通量.Abstract: With a high concentration of population and industries, Guangdong Province is highly dependent on WEF resources, and the contradiction between supply and demand of resources is increasingly prominent. It is of great practical significance to rationally allocate WEF resources and realize sustainable utilization of resources. Based on the complex network method, this study constructed the WEF resource network model of Guangdong Province in 2007, 2012 and 2017. By exploring resource network topology, key nodes and critical paths of the network were discovered, which were the focus of resource optimization allocation. The results show that: (1) WEF resource networks in Guangdong Province had small-world attribute, the energy network had the strongest small-world attribute, and the water resource network had the weakest small-world attribute. The regulation of key nodes and key edges will have a great influence on WEF resource networks. (2) Key nodes such as agriculture, food and tobacco industry, chemical product industry, electricity and heat production and supply industry, construction industry, communication equipment, computer and other electronic equipment manufacturing industry had relatively high strength, and their resource regulation played a significant role in multiple saving of WEF resources in Guangdong Province. (3) The electrical machinery and equipment manufacturing industry, construction industry, communication equipment, computer and other electronic equipment manufacturing industry had hub positions in the WEF resource network, and their resource saving effect could be quickly transmitted to the whole network. (4) Agriculture→food and tobacco industry, agriculture→textile industry, food and tobacco→accommodation and catering industry frequently appeared in the critical paths of WEF resource network. Changing their resources circulation flow could significantly change the critical path or even the circulation flow of the whole WEF resource network.
-
Key words:
- water-energy-food /
- resource network /
- key node /
- critical path /
- Guangdong Province
-
表 1 广东省经济系统42部门名称
行业编号 行业名称 行业编号 行业名称 S1 农林牧渔产品和服务 S22 其他制造产品 S2 煤炭采选产品 S23 废弃资源和废旧材料回收加工品 S3 石油和天然气开采产品 S24 金属制品、机械和设备修理服务 S4 金属矿采选产品 S25 电力、热力的生产和供应 S5 非金属矿和其他矿采选产品 S26 燃气生产和供应 S6 食品和烟草 S27 水的生产和供应 S7 纺织品 S28 建筑 S8 纺织服装鞋帽皮革羽绒及其制品 S29 批发和零售 S9 木材加工品和家具 S30 交通运输、仓储和邮政 S10 造纸印刷和文教体育用品 S31 住宿和餐饮 S11 石油、炼焦产品和核燃料加工品 S32 信息传输、软件和信息技术服务 S12 化学产品 S33 金融 S13 非金属矿物制品 S34 房地产 S14 金属冶炼和压延加工品 S35 租赁和商务服务 S15 金属制品 S36 科学研究和技术服务 S16 通用设备 S37 水利、环境和公共设施管理 S17 专用设备 S38 居民服务、修理和其他服务 S18 交通运输设备 S39 教育 S19 电气机械和器材 S40 卫生和社会工作 S20 通信设备、计算机和其他电子设备 S41 文化、体育和娱乐 S21 仪器仪表 S42 公共管理、社会保障和社会组织 表 2 广东省WEF资源网络相关指标
水资源 能源 粮食 参量 2007 2012 2017 2007 2012 2017 2007 2012 2017 平均聚类系数 0.46 0.49 0.43 0.47 0.47 0.48 0.42 0.44 0.45 平均路径长度 2.06 1.97 2.06 2.12 2.01 2.08 2.27 2.04 2.05 同规模随机网络聚类系数 0.21 0.22 0.22 0.19 0.19 0.19 0.17 0.19 0.19 同规模随机网络最短路径长度 1.74 1.71 1.70 1.79 1.82 1.80 1.92 1.84 1.83 小世界指数 1.90 1.96 1.60 2.06 2.25 2.16 2.09 2.17 2.11 表 3 WEF资源网络度数前十位的节点
部门 2007 部门 2012 部门 2017 S12 129 S12 130 S12 131 S10 117 S10 114 S30 108 S15 99 S25 106 S10 107 S25 98 S30 103 S20 88 S31 92 S31 96 S25 87 S30 90 S29 81 S15 81 S19 85 S35 80 S35 78 S20 81 S20 77 S19 76 S35 79 S19 73 S31 73 S14 60 S15 67 S29 72 表 4 广东省WEF资源网络关键路径及其权重
关键路径 关键路径权重 2017年水资源网络 S1→S6→S31→S35→S29→S20→S19 9.72×109 m3 S1→S7→S8→S10→S33→S29→S20→S19 2.45×109 m3 S12→S27→S28 2.20×109 m3 网络总边权 4.55×1010 m3 2017年能源网络 S11→S30→S29→S20→S19 1.10×106 TJ S4→S14→S15→S19→S20 1.08×106 TJ S15→S17→S20→S19 1.02×106 TJ 网络总边权 1.08×107 TJ 2017年粮食网络 S1→S6→S31→S35→S29→S20→S19 6.09×106吨 S1→S7→S8→S10→S33→S29→S20→S19 1.35×106吨 S1→S9→S28 8.07×105吨 网络总边权 1.89×107吨 2012年水资源网络 S1→S6→S31→S33→S29→S28 8.37×109 m3 S27→S25→S13→S28 3.56×109 m3 S27→S6→S31→S33→S29→S28 2.65×109 m3 网络总边权 4.88×1010 m3 2012年能源网络 S3→S25→S13→S28 1.21×106 TJ S4→S14→S19→S20 1.08×106 TJ S3→S11→S35→S33→S29→S28 9.18×105 TJ 网络总边权 1.38×107 TJ 2012年粮食网络 S1→S6→S31→S33→S29→S28 4.95×106吨 S1→S7→S8→S9→S28 1.12×106吨 S1→S12→S10→S33→S29→S28 8.58×105吨 网络总边权 1.67×107吨 2007年水资源网络 S1→S6→S31→S35→S12→S20→S19 9.23×109 m3 S27→S1→S6 7.17×109 m3 S37→S27→S28→S34 4.65×109 m3 网络总边权 4.61×1010 m3 2007年能源网络 S4→S14→S19→S20 1.39×106 TJ S25→S13→S28→S34 8.36×105 TJ S11→S25→S28→S34 8.31×105 TJ 网络总边权 1.16×107 TJ 2007年粮食网络 S1→S6→S31→S35→S12→S20→S19 4.72×106吨 S1→S31→S35→S12→S20→S19 1.31×106吨 S1→S7→S8 8.27×105吨 网络总边权 1.42×107吨 -
[1] 郝林钢, 于静洁, 王平, 等 面向可持续发展的水—能源—粮食纽带关系系统解析及其研究框架[J]. 地理科学进展2023 42 1 173 184 [2] 张静静, 汪文生, 李杨 区域水-能源-粮食绿色效率、地区差异及影响因素[J]. 中国环境科学2022 42 1 483 496 [3] 孙才志, 段兴杰 黄河流域水资源-能源-粮食系统生态可持续发展能力评价[J]. 人民黄河2023 45 2 85 96 [4] JIN Z Q, LIAO W J, MU Y X, et al Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems[J]. Energy2023 266 126535 [5] QIAN X Y, LIANG Q M, LIU L J, et al Key points for green management of water-energy-food in the Belt and Road Initiative: resource utilization efficiency, final demand behaviors and trade inequalities[J]. Journal of Cleaner Production2022 362 132386 [6] WEN C L, DONG W H, ZHANG Q C, et al A system dynamics model to simulate the water-energy-food nexus of resource-based regions: a case study in Daqing City, China[J]. Science of the Total Environment2022 806 150497 [7] WANG X K, DONG Z C, SUŠNIK J System dynamics modelling to simulate regional water-energy-food nexus combined with the society-economy-environment system in Hunan Province, China[J]. Science of the Total Environment2023 863 160993 [8] ELKAMEL M, VALENCIA A, ZHANG W, et al Multi-agent modeling for linking a green transportation system with an urban agriculture network in a food-energy-water nexus[J]. Sustainable Cities and Society2023 89 104354 [9] WU L N, ELSHORBAGY A, ALAM M S Dynamics of water-energy-food nexus interactions with climate change and policy options[J]. Environmental Research Communications2022 4 1 015009 [10] ULLAH A, WANG B, SHENG J F, et al Identifying vital nodes from local and global perspectives in complex networks[J]. Expert Systems With Applications2021 186 115778 [11] 张翠芝. 晶质石墨国际贸易网络特征及鲁棒性分析[D]. 石家庄: 河北地质大学, 2022 [12] HONG J K, TANG M H, WU Z Z, et al The evolution of patterns within embodied energy flows in the Chinese economy: a multi-regional-based complex network approach[J]. Sustainable Cities and Society2019 47 101500 [13] CHEN S, DING Y T, ZHANG Y F, et al Study on the robustness of China’s oil import network[J]. Energy2022 239 122139 [14] REN B, LI H J, SHI J L, et al Detecting the control and dependence relationships within the global embodied energy trade network[J]. Energy2022 238 121678 [15] SHI J L, LI H J, GUAN J H, et al Evolutionary features of global embodied energy flow between sectors: a complex network approach[J]. Energy2017 140 395 [16] 祝孔超, 赵媛, 夏四友, 等. “一带一路”石油产品贸易网络演化分析[J/OL]. 世界地理研究, 2023, 1-13. http://kns.cnki.net/kcms/detail/31.1626.P.20230213.1422.006.html [17] LI K, FENG C Y, LIANG Y H, et al Critical transmission sectors for provincial food-water nexus in China[J]. Journal of Cleaner Production2021 279 123886 [18] 曲申, 林瑾, 王永豪, 等 电力部门省际虚拟水流动模式与影响分析[J]. 北京理工大学学报(社会科学版)2023 25 2 45 56 [19] TORREGGIANI S, MANGIONI G, PUMA M J, et al Identifying the community structure of the food-trade international multi-network[J]. Environmental Research Letters2018 13 5 054026 [20] 王祥. 全球农产品贸易网络及其对我国食物安全的启示[D]. 兰州: 兰州大学, 2022 [21] KONAR M, DALIN C, SUWEIS S, et al Water for food: the global virtual water trade network[J]. Water Resources Research2011 47 5 1 17 [22] 汪艺晗, 杨谨, 刘其芸, 等 “一带一路”国家粮食贸易下虚拟水和隐含能源流动[J]. 资源科学2021 43 5 974 986 [23] 龚镇杰. 广东省用水效率时空格局演变及其成因研究[D]. 广州: 广东工业大学, 2022 [24] 刘羽, 朱记伟, 卢楠 珠三角城市群用水量与经济增长的脱钩状态及其驱动因素研究[J]. 水资源与水工程学报2023 34 1 91 -99+109[25] 张鹏飞, 徐静怡, 郭巍, 等 粤港澳大湾区电力系统低碳转型[J]. 上海交通大学学报2022 56 3 293 302 [26] 任峰, 龙定洪 广东省碳排放量测算、影响因素分析及预测模型选择[J]. 生态经济2022 38 5 21 -27+32[27] 符淼, 张昱 粤港澳大湾区对外货物贸易的多维度细化指数及其特征[J]. 国际经贸探索2020 36 10 71 85 .[28] 方伟, 万忠, 王佳友 粮食生产区域演变研究进展[J]. 广东农业科学2020 47 11 191 200 .[29] 聂常乐. 全球粮食贸易网络空间格局演化及机制[D]. 金华: 浙江师范大学, 2022 [30] WATTS D J, STROGATZ S H Collective dynamics of ‘small-world’ networks[J]. Nature1998 393 6684 440 [31] PARAND F A, RAHIMI H, GORZIN M Combining fuzzy logic and eigenvector centrality measure in social network analysis[J]. Physica A: Statistical Mechanics and Its Applications2016 459 24 31 [32] 洪思扬, 王红瑞, 程涛 广东省水与能源利用效率与部门使用特征分析[J]. 北京师范大学学报(自然科学版)2022 58 1 107 [33] FAN J L, KONG L S, ZHANG X, et al Energy-water nexus embodied in the supply chain of China: direct and indirect perspectives[J]. Energy Conversion and Management2019 183 126 -