Simulation of land transfer process based on energy flow model: A case study of Taihang Mountain area in Hebei Province
-
摘要: 利用河北太行山区东高昌村2016—2019年土地流转数据,运用ESL(energy system language)模型对河北太行山区土地流转前后过程进行模拟评价,基于土地利用情景和劳动力投入视角进一步模拟了土地流转后系统能量变动情况.结果表明:1)土地流转后农作物生物量、资本及生态环境相比土地流转前均有显著提升.10年后农作物生物量、资本和林地生物量分别达到土地流转前的12.97、2.10、36.54倍;50年后农作物生物量、资本和林地生物量分别达到土地流转前的15.34、4.23、39.22倍;100年后农作物生物量、资本和林地生物量分别达到土地流转前的26.79、7.39、66.60倍.2)改变种植结构的流转效果一般,但调整劳动力投入结构使土地流转后的南瓜生物量和资本呈现倒“U”型变化趋势,南瓜生物量在24年达到峰值,资本在48年达到峰值.投入当地劳动力使农作物生物量提高46.5%,资本提高212%,效果最为显著.Abstract: Aiming at the inability to effectively reveal the mechanism of energy flow in the process of land transfer, this article utilized the land transfer data of Donggaochang Village in Tai-hang Mountains of Hebei Province from 2016 to 2019, and applied the Energy System Language model to simulate and evaluate the process before and after land transfer in Tai-hang Mountains of Hebei Province, and further simulated the system energy change after land transfer based on the land use scenarios and the viewpoint of labor inputs. The energy changes of the system after land transfer were further simulated based on land use scenarios and labor input perspectives. The results showed that: (1) crop biomass, capital and ecological environment were significantly increased after land transfer compared with before land transfer; after 10 years, crop biomass, capital and forest biomass were 12.97 times, 2.10 times and 36.54 times higher than before land transfer respectively; after 50 years, crop biomass, capital and forest biomass were 15.34 times, 4.23 times and 39.22 times higher than before land transfer respectively; after 100 years, crop biomass, capital and forest biomass were 26.79 times, 7.39 times and 66.60 times higher than before land transfer respectively. (2) The effect of the transfer of changing the planting structure was general, but the adjustment of the labor input structure made the biomass and capital of pumpkin after the land transfer showed an inverted U-shaped trend, with the biomass of pumpkin reaching the peak in 24 years and the capital reaching the peak in 48 years. Inputting local labor increased crop biomass by 46.5% and capital by 212%, which was the most significant effect.
-
表 1 不同土地利用情景设置
名称 情景模拟 情景1a 娃娃菜种植量每年减少5%,南瓜种植量每年增加5% 情景1b 娃娃菜种植量每年增加5%,南瓜种植量每年减少5% 情景1c 娃娃菜种植量每年减少5%,南瓜种植量每年减少5% 情景1d 娃娃菜种植量每年增加5%,南瓜种植量每年增加5% 表 2 劳动力投入情景设置
名称 情景模拟 情景2a 保持初始劳动力不变 情景2b 外来劳动力增加10%,当地劳动力保持不变 情景2c 外来劳动力保持不变,当地劳动力增加10% 情景2d 外来劳动力增加5%,当地劳动力增加5% -
[1] 刘志忠,张浩然,欧阳慧. 乡村振兴下土地流转的收入分配效应研究:基于农村劳动力就地转移的视角[J]. 学术研究,2022(8):83 [2] 祁晓民,杨轶华. 西部地区农户生计分化、土地流转与收入增长:基于西部五省区微观调查数据[J]. 干旱区资源与环境,2022,36(8):38 [3] 中华人民共和国国务院. 《中共中央国务院关于做好2023年全面推进乡村振兴重点工作的意见》[OL]. (2023-02-13) [2023-05-12]. https://www.gov.cn/zhengce/2023-02/13/content_5741370.htm?dzb=true [4] 王晓. 农户土地流转行为模拟及其对环境的影响研究:以陕西省蓝田县为例[D]. 西安:西北大学,. [5] 周陶. 四川丘陵山区农户内生型农地流转研究:基于人工社会模型[D]. 重庆:西南大学,. [6] 余强毅,吴文斌,陈羊阳,等. 农作物空间格局变化模拟模型的MATLAB实现及应用[J]. 农业工程学报,2014,30(12):105 [7] 廖英伶. 基于MAS模型的海岸带农户土地利用生计策略模拟及政策调控研究[D]. 南宁:广西大学,. [8] 胡韵菲. 基于农户视角的淮河流域玉米种植驱动机制研究[D]. 北京:中国农业科学院,. [9] 王俊龙,张艳梅,郭贯成. 国内农村土地流转问题研究的演化路径与追踪-−基于CSSCI期刊相关论文的知识图谱分析[J]. 中国农业资源与区划,2022,43(10):246 [10] YU,LIU. Will land transfer always increase technical efficiency in China? −a land cost perspective[J]. Land Use Policy,2019,82:414 doi: 10.1016/j.landusepol.2018.12.002 [11] 李振杰,韩杰. 基于Logistic回归模型的农户土地流转意愿实证分析[J]. 统计与决策,2019,35(13):110 [12] LIU Y,YAN B,WANG Y,et al. Explanations of ecological relationships with energy systems concepts[J]. Ecological Modelling,2002,158(3):201 doi: 10.1016/S0304-3800(02)00232-6 [13] 朱利叶. 河北平原不同种植制度及全田地膜覆盖小麦、玉米周年产量与资源利用研究[D]. 保定:河北农业大学. [14] 王南. 太行山低山丘陵区坡向对荆条灌丛生物量及碳储量的影响[D]. 保定:河北农业大学,. [15] ZIHAN,XU. Energy modeling simulation of changes in ecosystem services before and after the implementation of a Grain-for-Green program on the Loess Plateau−a case study of the Zhifanggou valley in Ansai County,Shaanxi Province,China[J]. Ecosystem Services,2018,31:32 doi: 10.1016/j.ecoser.2018.03.013 [16] 贾小乐,周源,延建林,等. 基于能值分析的环太湖城市群生态经济系统可持续发展研究[J]. 生态学报,2019,39(17):6487 [17] 杨青,刘耕源. 森林生态系统服务价值非货币量核算:以京津冀城市群为例[J]. 应用生态学报,2018,29(11):3747 [18] ELLIOTT T,CAMPBELL. Relationships between renewable emergy storage or flow and biodiversity:a modeling investigation[J]. Ecological Modelling,2016,340:134 doi: 10.1016/j.ecolmodel.2016.08.004 [19] 陈理庭,蔡海生,张婷,等. 基于Markov-FLUS模型的饶河流域土地利用多情景模拟分析[J]. 生态学报,2022,42(10):3947-3958 [20] 王彦武,高金芳,陈爱华,等. 关川河流域土地利用变化对其生态服务价值的影响[J]. 山东农业科学,2023,55(4):134 [21] 栾江,马瑞. 农村劳动力转移就业稳定性对土地流转的影响效应研究:基于迁移异质性视角[J]. 中国农业资源与区划,2021,42(12):3947 [22] 苗海民,朱俊峰. 从乡土中国到城乡中国:农村劳动力选择性流动抑制了土地流转吗[J]. 世界经济文汇,2021(6):72 doi: 10.3969/j.issn.0488-6364.2021.6.sjjjwh202106005 [23] 杜鑫,张贵友. 土地流转对农村居民收入分配的影响:基于2020年10省份农户调查数据的实证分析[J]. 中国农村经济,2022(5):107 [24] 张广辉,张建. 农村土地流转对农户收入的影响:内在机理与实证检验[J]. 经济学家,2023(2):120 -