[1] |
SENTHIL T, VISHWANATH A, BALENTS L, et al. Deconfined quantum critical points[J]. Science,2004,303(5663):1490 doi: 10.1126/science.1091806
|
[2] |
SANDVIK A W. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions[J]. Physical Review Letters,2007,98(22):227202 doi: 10.1103/PhysRevLett.98.227202
|
[3] |
LIU L, SHAO H, LIN Y C, et al. Random-singlet phase in disordered two-dimensional quantum magnets[J]. Physical Review X,2018,8(4):041040 doi: 10.1103/PhysRevX.8.041040
|
[4] |
NAHUM A, CHALKER J T, SERNA P, et al. Deconfined quantum criticality, scaling violations, and classical loop models[J]. Phys. Rev. X,2015,5(4):041048
|
[5] |
SHAO H, GUO W A, SANDVIK A W. Quantum criticality with two length scales[J]. Science,2016,352(6282):213 doi: 10.1126/science.aad5007
|
[6] |
SHAO H, GUO W A, SANDVIK A W. Monte Carlo renormalization flows in the space of relevant and irrelevant operators: Application to three-dimensional clock models[J]. Physical Review Letters,2020,124(8):080602 doi: 10.1103/PhysRevLett.124.080602
|
[7] |
GROVER T, SENTHIL T. Topological spin Hall states, charged skyrmions, and superconductivity in two dimensions[J]. Physical Review Letters,2008,100(15):156804 doi: 10.1103/PhysRevLett.100.156804
|
[8] |
LIU Y H, WANG Z J, SATO T, et al. Superconductivity from the condensation of topological defects in a quantum spin Hall insulator[J]. Nature Communications,2019,10(1):2658 doi: 10.1038/s41467-019-10372-0
|
[9] |
LIU Y H, WANG Z J, SATO T, et al. Gross-Neveu Heisenberg criticality: Dynamical generation of quantum spin Hall masses[J]. Physical Review B,2021,104(3):035107
|
[10] |
HOHENADLER M, LIU Y H, SATO T, et al. Thermodynamic and dynamical signatures of a quantum spin Hall insulator to superconductor transition[J]. Physical Review B,2022,106(2):024509 doi: 10.1103/PhysRevB.106.024509
|
[11] |
WANG Z J, LIU Y H, SATO T, et al. Doping-induced quantum spin hall insulator to superconductor transition[J]. Physical Review Letters,2021,126(20):205701 doi: 10.1103/PhysRevLett.126.205701
|
[12] |
KHALAF E, CHATTERJEE S, BULTINCK N, et al. Charged skyrmions and topological origin of superconductivity in magicangle graphene[EB/OL]. (2023-07-10)[2021-05-05]. https://www.science.org/doi/10.1126/sciadv.abf5299
|
[13] |
CHATTERJEE S, IPPOLITI M and ZALETRL M. Skyrmion superconductivity: DMRG evidence for a topological route to superconductivity[J]. Physical Review B,2022,106(3):035421 doi: 10.1103/PhysRevB.106.035421
|
[14] |
KWAN Y, WAGNER G, BULTINCK N, et al. Skyrmions in twisted bilayer graphene: stability, pairing, and crystallization[J]. Physical Review X,2022,12(3):031020 doi: 10.1103/PhysRevX.12.031020
|
[15] |
BULTINCK N, KHALAF E, LIU S, et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling[J]. Physical Review X,2020,10(3):031034 doi: 10.1103/PhysRevX.10.031034
|
[16] |
HOU D S, LIU Y H, SATO T, et al. Bandwidth controlled quantum phase transition between an easy-plane quantum spin Hall state and an s-wave superconductor[J]. Physical Review B,2023,107(15):155107 doi: 10.1103/PhysRevB.107.155107
|
[17] |
HOU D S, LIU Y H, SATO T, et al. Effective model for superconductivity in magic-angle graphene[EB/OL]. (2023-07-10)[2023-05-03]. https://arxiv.org/abs/2304.02428
|
[18] |
杨展如. 量子统计物理学,2007209
|
[19] |
KANE C and MELE E. $Z_2$ Topological order and the quantum spin Hall effect[J]. Physical Review Letters,2005,95(14):146802 doi: 10.1103/PhysRevLett.95.146802
|