Statistical characteristics of individual and population mobility networks of urban heavy trucks
-
摘要: 重型卡车是城市货运系统的重要组成部分,研究城市重型卡车出行网络特征,对于城市货运系统规划和管理具有潜在的参考价值.本文对中国4个典型城市的重型卡车出行网络进行统计特征分析.使用从重型卡车GPS轨迹数据中提取的出行链数据,建立了重型卡车个体出行网络,进而合并为群体出行网络.在重型卡车个体出行网络方面,发现网络连边组成的出行模体具有明显的异质性特征,节点返回步长近似服从截尾幂律分布,点权近似服从齐普夫定律,网络节点数量具有亚线性增长特征;在重型卡车群体出行网络方面,发现点权近似服从幂律尾分布,边权近似服从幂律分布,出行距离近似服从指数分布,边权与点权、距离之间的关系近似服从社会引力定律.对这些统计特征的形成机制进行了分析,并对再现这些统计特征的理论模型研究、个体群体出行网络时变特征分析、货运系统多层相依复杂网络构建等问题进行了初步探讨.Abstract: Urban heavy trucks are an important part of urban freight transportation system. The study of urban heavy trucks mobility network characteristics is of potential reference value for urban freight transportation system planning and management. Statistical characteristics of heavy trucks mobility networks in four typical cities in China are analyzed in this paper. Using the trip chains extracted from the heavy trucks GPS track data, individual heavy trucks mobility networks are established and then merged into population mobility network. It is found that in individual mobility networks, travel motif composed of connected edges of individual mobility networks has obvious heterogeneity characteristics, the node return steps approximately obey truncated power-law distribution, the node weights approximately obey Zipf’s law, the number of network nodes has sublinear growth characteristics. It is found that in population mobility networks of heavy trucks, node weights approximately obey power-law tail distribution, edge weights approximately obey power-law distribution, mobility distances approximately obey exponential distribution, relationship between edge weights, node weights and distances approximately obeys social gravity law. The underlying mechanisms of these statistical characteristics are analyzed. Theoretical model of reproducing these statistical characteristics, time-varying characteristics analysis of individual and population mobility networks, construction of multi-layer interdependent complex networks of freight systems, etc. are preliminarily discussed.
-
Key words:
- urban freight /
- heavy trucks /
- mobility network /
- complex network /
- statistical characteristics
-
图 5 城市重型卡车群体出行网络统计特征
a~d. 重型卡车群体出行网络点权分布$p(s)$,其中s表示群体出行网络节点的权值,p(s)表示点权为s的节点数量在城市重型卡车群体出行网络节点总数量中所占的比例;e~h. 重型卡车群体出行网络边权分布$p(w)$,其中w表示群体出行网络连边的权值,p(w)表示边权为w的连边数量在城市重型卡车群体出行网络连边总数量中所占的比例;i~l. 重型卡车群体出行距离分布$p(d)$,其中d表示重型卡车群体出行网络连边的长度,p(d)表示长度为d的连边上的出行量在城市重型卡车出行总量中所占的比例;m~p. 节点$i$、$j$间距离$d_{ij}$与节点i、j间边权比点权$w_{ij}/s_i s_j$的对数关系.
表 1 中国典型城市重型卡车个体群体出行网络基本统计数据
城市 重型卡车数量 个体出行网络边总数 点总数 群体出行网络节点数 连边数 总边权 出行总距离/km 北京 18510 650757 261997 15983 249107 588718 10151063 天津 23943 774654 379312 10697 290692 699659 13925336 重庆 34667 988170 455400 10631 276076 725205 15182454 上海 41608 1332216 632930 16096 497232 1184977 21708582 -
[1] BEHRENDS S. Recent developments in urban logistics research:a review of the proceedings of the international conference on city logistics 2009–2013[J]. Transportation Research Procedia,2016,12:278 doi: 10.1016/j.trpro.2016.02.065 [2] WEI L, CHEN G, SUN W, et al. Recognition of operating characteristics of heavy trucks based on the identification of GPS trajectory stay points[J]. Security and Communication Networks,2021,2021:1 [3] ALJOHANI K. Integrating logistics facilities in Inner Melbourne to alleviate impacts of urban freight transport[C]//38th Australasian Transport Research Forum. Australia: Australian Road Research Board (ARRB), 2016: 01627461 [4] YANG Y, JIA B, YAN X Y, et al. Identifying intercity freight trip ends of heavy trucks from GPS data[J]. Transportation Research Part E: Logistics and Transportation Review,2022,157:102590 doi: 10.1016/j.tre.2021.102590 [5] YANG Y, JIA B, YAN X Y, et al. Identifying intracity freight trip ends from heavy truck GPS trajectories[J]. Transportation Research Part C: Emerging Technologies,2022,136:103564 doi: 10.1016/j.trc.2022.103564 [6] OGDEN K W. The distribution of truck trips and commodity flow in urban areas: a gravity model analysis[J]. Transportation Research,1978,12(2):131 doi: 10.1016/0041-1647(78)90052-7 [7] HASSAN L A H, MAHMASSANI H S, CHEN Y. Reinforcement learning framework for freight demand forecasting to support operational planning decisions[J]. Transportation Research Part E: Logistics and Transportation Review,2020,137:101926 doi: 10.1016/j.tre.2020.101926 [8] BARBOSA H, BARTHELEMY M, GHOSHAL G, et al. Human mobility: models and applications[J]. Physics Reports,2018,734:1 doi: 10.1016/j.physrep.2018.01.001 [9] BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature,2006,439(7075):462 doi: 10.1038/nature04292 [10] GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns[J]. Nature,2008,453(7196):779 doi: 10.1038/nature06958 [11] SONG C, QU Z, BLUMM N, et al. Limits of predictability in human mobility[J]. Science,2010,327(5968):1018 doi: 10.1126/science.1177170 [12] SONG C, KOREN T, WANG P, et al. Modelling the scaling properties of human mobility[J]. Nature Physics,2010,6(10):818 doi: 10.1038/nphys1760 [13] SIMINI F, GONZÁLEZ M C, MARITAN A, et al. A universal model for mobility and migration patterns[J]. Nature,2012,484(7392):96 doi: 10.1038/nature10856 [14] CHANG S, PIERSON E, KOH P W, et al. Mobility network models of COVID-19 explain inequities and inform reopening[J]. Nature,2021,589(7840):82 doi: 10.1038/s41586-020-2923-3 [15] YAN X Y, ZHAO C, FAN Y, et al. Universal predictability of mobility patterns in cities[J]. Journal of The Royal Society Interface,2014,11(100):20140834 doi: 10.1098/rsif.2014.0834 [16] YAN X Y, WANG W X, GAO Z Y, et al. Universal model of individual and population mobility on diverse spatial scales[J]. Nature Communications,2017,8(1):1639 doi: 10.1038/s41467-017-01892-8 [17] KALUZA P, KÖLZSCH A, GASTNER M T, et al. The complex network of global cargo ship movements[J]. Journal of the Royal Society Interface,2010,7(48):1093 doi: 10.1098/rsif.2009.0495 [18] BOMBELLI A, SANTOS B F, TAVASSZY L. Analysis of the air cargo transport network using a complex network theory perspective[J]. Transportation Research Part E: Logistics and Transportation Review,2020,138:101959 doi: 10.1016/j.tre.2020.101959 [19] WANG L, MA J C, JIANG Z Q, et al. Gravity law in the Chinese highway freight transportation networks[J]. EPJ Data Science,2019,8(1):1 doi: 10.1140/epjds/s13688-018-0179-z [20] HOLME P, SARAMÄKI J. Temporal networks[J]. Physics Reports,2012,519(3):97 doi: 10.1016/j.physrep.2012.03.001 [21] ZIPF G K. The meaning-frequency relationship of words[J]. The Journal of General Psychology,1945,33(2):251 doi: 10.1080/00221309.1945.10544509 [22] ZHAO Y M, ZENG A, YAN X Y, et al. Unified underpinning of human mobility in the real world and cyberspace[J]. New Journal of Physics,2016,18(5):053025 doi: 10.1088/1367-2630/18/5/053025 [23] 韦斯特. 规模:复杂世界的简单法则[M]. 张培, 译. 北京: 中信出版集团, 2018 [24] AXTELL R L. Zipf distribution of US firm sizes[J]. Science,2001,293(5536):1818 doi: 10.1126/science.1062081 [25] 闫小勇. 社会引力定律追根溯源[J]. 物理学报,2020,69(8):088903 [26] 闫小勇. 超越引力定律:空间交互和出行分布预测理论与方法[M]. 北京: 科学出版社, 2019 [27] YAN X Y, ZHOU T. Destination choice game: a spatial interaction theory on human mobility[J]. Scientific Reports,2019,9(1):9466 doi: 10.1038/s41598-019-46026-w [28] WANG H, YAN X Y, WU J. Free utility model for explaining the social gravity law[J]. Journal of Statistical Mechanics: Theory and Experiment,2021,2021(3):033418 doi: 10.1088/1742-5468/abee18 [29] 王浩, 闫小勇. 用自由效用模型刻画出行选择行为[J]. 交通运输工程与信息学报,2022,20(1):47 [30] BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports,2014,544(1):1 doi: 10.1016/j.physrep.2014.07.001 -