[1] |
朱凤辉,樊瑛. 基于电阻网络的节点重要性判别[J]. 北京师范大学学报(自然科学版),2013,49(6):636
|
[2] |
ZHU F H,WANG W X,DI Z R,et al. Identifying and characterizing key nodes among communities based on electrical-circuit networks[J]. PLoS One,2014,9(6):e97021 doi: 10.1371/journal.pone.0097021
|
[3] |
NIU Q K,ZENG A,FAN Y,et al. Robustness of centrality measures against network manipulation[J]. Physica A: Statistical Mechanics and Its Applications,2015,438:124 doi: 10.1016/j.physa.2015.06.031
|
[4] |
ZHANG J,LI X T,WANG X R,et al. Scaling behaviours in the growth of networked systems and their geometric origins[J]. Scientific Reports,2015,5:9767 doi: 10.1038/srep09767
|
[5] |
ZOU L,WANG C,ZENG A,et al. Link prediction in growing networks with aging[J]. Soc Networks,2021,65:1 doi: 10.1016/j.socnet.2020.11.001
|
[6] |
ZOU L,WANG A,ZENG A,et al. Connecting node age with centrality measurement in growing networks[J]. Journal of Statistical Mechanics:Theory and Experiment,2019,2019(7):073403 doi: 10.1088/1742-5468/ab270d
|
[7] |
GUO L Z,LOU X D,SHI P T,et al. Flow distances on open flow networks[J]. Physica A:Statistical Mechanics and Its Applications,2015,437:235 doi: 10.1016/j.physa.2015.05.070
|
[8] |
ZHANG J A,WU L F. Allometry and dissipation of ecological flow networks[J]. PLoS One,2013,8(9):e72525 doi: 10.1371/journal.pone.0072525
|
[9] |
LOU X D,LI Y,GU W W,et al. The atlas of Chinese world wide web ecosystem shaped by the collective attention flows[J]. PLoS One,2016,11(11):e0165240 doi: 10.1371/journal.pone.0165240
|
[10] |
WU Z N,DI Z R,FAN Y. An asymmetric popularity-similarity optimization method for embedding directed networks into hyperbolic space[J]. Complexity,2020,2020:1
|
[11] |
XIN R Y,ZHANG J,SHAO Y T. Complex network classification with convolutional neural network[J]. Tsinghua Science and Technology,2020,25(4):447 doi: 10.26599/TST.2019.9010055
|
[12] |
GU W W,GONG L,LOU X D,et al. The hidden flow structure and metric space of network embedding algorithms based on random walks[J]. Scientific Reports,2017,7:13114 doi: 10.1038/s41598-017-12586-y
|
[13] |
JIANG Y X,LI M,FAN Y,et al. Characterizing dissimilarity of weighted networks[J]. Scientific Reports,2021,11:5768 doi: 10.1038/s41598-021-85175-9
|
[14] |
JIANG Y X,LI M,DI Z R. Dissimilarity-based filtering and compression of complex weighted networks[J]. Europhysics Letters,2022,139(4):42003 doi: 10.1209/0295-5075/ac8286
|
[15] |
CHEN W T,ZENG A,CUI X H. Preserving the topological properties of complex networks in network sampling[J]. Chaos,2022,32(3):033122 doi: 10.1063/5.0076854
|
[16] |
LIN G Q,DI Z R,FAN Y. Cascading failures in complex networks with community structure[J]. International Journal of Modern Physics C,2014,25(5):1440005 doi: 10.1142/S0129183114400051
|
[17] |
FENG Y Q,SUN B H,ZENG A. Cascade of links in complex networks[J]. Physics Letters A,2017,381(4):263 doi: 10.1016/j.physleta.2016.11.008
|
[18] |
SUN Y,MA L,ZENG A,et al. Spreading to localized targets in complex networks[J]. Scientific Reports,2016,6:38865 doi: 10.1038/srep38865
|
[19] |
ZHANG A B,ZENG A,FAN Y,et al. Guiding propagation to localized target nodes in complex networks[J]. Chaos,2021,31(7):073104 doi: 10.1063/5.0029411
|
[20] |
LI R Q,WANG W X,DI Z R. Effects of human dynamics on epidemic spreading in Côte d’Ivoire[J]. Physica A:Statistical Mechanics and Its Applications,2017,467:30 doi: 10.1016/j.physa.2016.09.059
|
[21] |
WANG N N,WANG Y J,QIU S H,et al. Epidemic spreading with migration in networked metapopulation[J]. Communications in Nonlinear Science and Numerical Simulation,2022,109:106260 doi: 10.1016/j.cnsns.2022.106260
|
[22] |
ZHANG J,DONG L,ZHANG Y B,et al. Investigating time,strength,and duration of measures in controlling the spread of COVID-19 using a networked meta-population model[J]. Nonlinear Dynamics,2020,101(3):1789 doi: 10.1007/s11071-020-05769-2
|
[23] |
SHEN Z S,CAO S N,WANG W X,et al. Locating the source of diffusion in complex networks by time-reversal backward spreading[J]. Physical Review E,2016,93(3):032301
|
[24] |
FU L,SHEN Z S,WANG W X,et al. Multi-source localization on complex networks with limited observers[J]. EPL (Europhysics Letters),2016,113(1):18006 doi: 10.1209/0295-5075/113/18006
|
[25] |
HU Z L,HAN X,LAI Y C,et al. Optimal localization of diffusion sources in complex networks[J]. Royal Society Open Science,2017,4(4):170091 doi: 10.1098/rsos.170091
|
[26] |
WANG W X,LAI Y C,GREBOGI C. Data based identification and prediction of nonlinear and complex dynamical systems[J]. Physics Reports,2016,644:1 doi: 10.1016/j.physrep.2016.06.004
|
[27] |
SHEN Z S,WANG W X,FAN Y,et al. Reconstructing propagation networks with natural diversity and identifying hidden sources[J]. Nature Communications,2014,5:4323 doi: 10.1038/ncomms5323
|
[28] |
LI J W,SHEN Z S,WANG W X,et al. Universal data-based method for reconstructing complex networks with binary-state dynamics[J]. Physical Review E,2017,95(3):032303
|
[29] |
HAN X A,SHEN Z S,WANG W X,et al. Robust reconstruction of complex networks from sparse data[J]. Physical Review Letters,2015,114(2):028701 doi: 10.1103/PhysRevLett.114.028701
|
[30] |
MA L,HAN X,SHEN Z S,et al. Efficient reconstruction of heterogeneous networks from time series via compressed sensing[J]. PLoS One,2015,10(11):e0142837 doi: 10.1371/journal.pone.0142837
|
[31] |
HAN X,SHEN Z S,WANG W X,et al. Reconstructing direct and indirect interactions in networked public goods game[J]. Scientific Reports,2016,6:30241 doi: 10.1038/srep30241
|
[32] |
TANG S Q,SHEN Z S,WANG W X,et al. Uncovering transportation networks from traffic flux by compressed sensing[J]. European Physical Journal B,2015,88(8):211 doi: 10.1140/epjb/e2015-60234-y
|
[33] |
ZHANG Z,ZHAO Y,LIU J,et al. A general deep learning framework for network reconstruction and dynamics learning[J]. Applied Network Science,2019,4(1):1 doi: 10.1007/s41109-018-0108-x
|
[34] |
CHEN M Y,ZHANG Y,ZHANG Z,et al. Inferring network structure with unobservable nodes from time series data[J]. Chaos,2022,32(1):013126 doi: 10.1063/5.0076521
|
[35] |
ZHANG Y,GUO Y,ZHANG Z,et al. Universal framework for reconstructing complex networks and node dynamics from discrete or continuous dynamics data[J]. Physical Review E,2022,106(3):034315 doi: 10.1103/PhysRevE.106.034315
|
[36] |
YUAN Z Z,ZHAO C,DI Z R,et al. Exact controllability of complex networks[J]. Nature Communications,2013,4:2447 doi: 10.1038/ncomms3447
|
[37] |
LI J W,YUAN Z Z,FAN Y,et al. Controllability of fractal networks:an analytical approach[J]. EPL (Europhysics Letters),2014,105(5):58001 doi: 10.1209/0295-5075/105/58001
|
[38] |
ZHAO C,WANG W X,LIU Y Y,et al. Intrinsic dynamics induce global symmetry in network controllability[J]. Scientific Reports,2015,5:8422 doi: 10.1038/srep08422
|
[39] |
GAO X D,WANG W X,LAI Y C. Control efficacy of complex networks[J]. Scientific Reports,2016,6:28037 doi: 10.1038/srep28037
|
[40] |
刘雨含,李乐,樊瑛. 股票符号网络研究[J]. 北京师范大学学报(自然科学版),2018,54(2):186
|
[41] |
GU K,FAN Y,ZENG A,et al. Analysis on large-scale rating systems based on the signed network[J]. Physica A:Statistical Mechanics and Its Applications,2018,507:99 doi: 10.1016/j.physa.2018.05.048
|
[42] |
LI L,GU K,ZENG A,et al. Modeling online social signed networks[J]. Physica A:Statistical Mechanics and Its Applications,2018,495:345 doi: 10.1016/j.physa.2017.12.089
|
[43] |
ZHOU J L,LI L B,ZENG A,et al. Random walk on signed networks[J]. Physica A:Statistical Mechanics and Its Applications,2018,508:558 doi: 10.1016/j.physa.2018.05.139
|
[44] |
张奥博,樊瑛,狄增如. 符号网络下平衡结构对舆论形成的影响[J]. 复杂系统与复杂性科学,2019,16(3):22
|
[45] |
LI L B,FAN Y,ZENG A,et al. Binary opinion dynamics on signed networks based on Ising model[J]. Physica A:Statistical Mechanics and Its Applications,2019,525:433 doi: 10.1016/j.physa.2019.03.011
|
[46] |
GAO Y,FAN Y,DI Z R. The dynamics of two-state public opinion propagation on signed networks[J]. Journal of Systems Science and Complexity,2021,34(1):251 doi: 10.1007/s11424-020-9226-5
|
[47] |
LI L B,ZENG A,FAN Y,et al. Modeling multi-opinion propagation in complex systems with heterogeneous relationships via Potts model on signed networks[J]. Chaos,2022,32(8):083101 doi: 10.1063/5.0084525
|
[48] |
LI A W,XU X K,FAN Y. Immunization strategies for false information spreading on signed social networks[J]. Chaos,Solitons and Fractals,2022,162:112489 doi: 10.1016/j.chaos.2022.112489
|
[49] |
ZHONG X W,FAN Y,DI Z R. The evolution of cooperation in public goods games on signed networks[J]. Physica A:Statistical Mechanics and Its Applications,2021,582:126217 doi: 10.1016/j.physa.2021.126217
|
[50] |
ZHONG X W,HUANG G,WANG N N,et al. Dynamical analysis of evolutionary public goods game on signed networks[J]. Chaos,2022,32(2):023107 doi: 10.1063/5.0070358
|
[51] |
GU K,FAN Y,DI Z R. How to predict recommendation lists that users do not like[J]. Physica A: Statistical Mechanics and Its Applications,2020,537:122684 doi: 10.1016/j.physa.2019.122684
|
[52] |
吴宗柠,狄增如,樊瑛. 多层网络的结构与功能研究进展[J]. 电子科技大学学报,2021,50(1):106 doi: 10.12178/1001-0548.2020068
|
[53] |
WU Z N,DI Z R,FAN Y. The robustness of interdependent directed networks with intra-layer angular correlations[J]. Frontiers in Physics,2021,9:755567 doi: 10.3389/fphy.2021.755567
|
[54] |
ZHANG A B,ZENG A,FAN Y,et al. Detangling the multilayer structure from an aggregated network[J]. New Journal of Physics,2021,23(7):073046 doi: 10.1088/1367-2630/ac136d
|
[55] |
LIU J,FAN Y,ZHANG J,et al. Coevolution of agent’s behavior and noise parameters in majority vote game on multilayer networks[EB/OL]. (2019-01-31)[2023-03-31]. https://iopscience.iop.org/article/10.1088/1367-2630/ab00aa
|
[56] |
YUAN Z Z,ZHAO C,WANG W X,et al. Exact controllability of multiplex networks[J]. New Journal of Physics,2014,16(10):103036 doi: 10.1088/1367-2630/16/10/103036
|
[57] |
LI L B,FAN Y,ZENG A,et al. Understanding the anticontagion process and reopening of China during COVID-19 via coevolution network of epidemic and awareness[J]. Complexity,2021,2021:1
|
[58] |
ZENG A,YEUNG C H,MEDO M,et al. Modeling mutual feedback between users and recommender systems[J]. Journal of Statistical Mechanics:Theory and Experiment,2015,2015(7):P07020 doi: 10.1088/1742-5468/2015/07/P07020
|
[59] |
ZENG A,YEUNG C H. Predicting the future trend of popularity by network diffusion[J]. Chaos,2016,26(6):063102 doi: 10.1063/1.4953013
|
[60] |
ZHOU L,CUI X H,ZENG A,et al. Improving diffusion-based recommendation in online rating systems[J]. International Journal of Modern Physics C,2021,32(7):2150094 doi: 10.1142/S0129183121500947
|
[61] |
LI H Y,ZENG A. Improving recommendation by connecting user behavior in temporal and topological dimensions[J]. Physica A:Statistical Mechanics and Its Applications,2022,585:126378 doi: 10.1016/j.physa.2021.126378
|
[62] |
吴宗柠,樊瑛. 复杂网络视角下国际贸易研究综述[J]. 电子科技大学学报,2018,47(3):469 doi: 10.3969/j.issn.1001-0548.2018.03.023
|
[63] |
FAN Y,REN S T,CAI H B,et al. The state’s role and position in international trade:a complex network perspective[J]. Economic Modelling,2014,39:71 doi: 10.1016/j.econmod.2014.02.027
|
[64] |
任素婷,梁栋,樊瑛. 国际贸易网络中国家地位演化的聚类分析[J]. 北京师范大学学报(自然科学版),2014,50(3):323
|
[65] |
任素婷,崔雪锋,樊瑛. 国际贸易网络中的靴襻渗流模型[J]. 电子科技大学学报,2015,44(2):178
|
[66] |
吴宗柠,吕俊宇,蔡宏波,等. 双曲空间下国际贸易网络建模与分析:以小麦国际贸易为例[J]. 复杂系统与复杂性科学,2018,15(1):31
|
[67] |
WU Z N,CAI H B,ZHAO R N,et al. A topological analysis of trade distance:evidence from the gravity model and complex flow networks[J]. Sustainability,2020,12(9):3511 doi: 10.3390/su12093511
|
[68] |
程静静,樊瑛. 基于网络相似性测度的国际贸易产品分类[J]. 电子科技大学学报,2021,50(2):303
|
[69] |
吴畏,王文旭,樊瑛. 基于风险传染的金融网络系统风险模型[J]. 北京师范大学学报(自然科学版),2014,50(6):668
|
[70] |
李恺华,樊瑛. 基于优化阈值法的股票网络构建与重要节点判别[J]. 北京师范大学学报(自然科学版),2015,51(6):582
|
[71] |
LI X M,HUANG S Y,CHEN Q H. Analyzing the driving and dragging force in China’s inter-provincial migration flows[J]. International Journal of Modern Physics C,2019,30(7):1940015 doi: 10.1142/S0129183119400151
|
[72] |
LI X M,HUANG S Y,CHEN J W,et al. Analysis of the driving factors of U. S. domestic population mobility[J]. Physica A: Statistical Mechanics and Its Applications,2020,539:122984 doi: 10.1016/j.physa.2019.122984
|
[73] |
LI X M,XU H Z,CHEN J W,et al. Characterizing the international migration barriers with a probabilistic multilateral migration model[J]. Scientific Reports,2016,6:32522 doi: 10.1038/srep32522
|
[74] |
GOU W S,HUANG S Y,CHEN Q H,et al. Structure and dynamic of global population migration network[J]. Complexity,2020,2020:1
|
[75] |
HUANG S Y,LI X M,CHEN Q H. Longcuts in the global migration network[J]. EPL (Europhysics Letters),2021,134(4):48002 doi: 10.1209/0295-5075/134/48002
|
[76] |
HE Y F,ZHAO C,ZENG A. Ranking locations in a city via the collective home-work relations in human mobility data[EB/OL]. (2022-12-15)[2023-04-01]. https://www.sciencedirect.com/science/article/abs/pii/S037843712200841X
|
[77] |
ZENG F Q,GONG L,LIU J,et al. Human mobility in interest space and interactive random walk[J]. Journal of Physics:Complexity,2020,1(2):025004 doi: 10.1088/2632-072X/ab7f4f
|
[78] |
WANG M Y,ZENG A,CUI X H. Collective user switching behavior reveals the influence of TV channels and their hidden community structure[J]. Physica A: Statistical Mechanics and Its Applications,2022,606:128105 doi: 10.1016/j.physa.2022.128105
|
[79] |
SHI Y B,LI L,WANG Y G,et al. A study of Chinese regional hierarchical structure based on surnames[J]. Physica A:Statistical Mechanics and Its Applications,2019,518:169 doi: 10.1016/j.physa.2018.11.059
|
[80] |
SHI Y B,LI L,WANG Y G,et al. Regional surname affinity:a spatial network approach[J]. American Journal of Physical Anthropology,2019,168(3):428 doi: 10.1002/ajpa.23755
|
[81] |
ZENG A,SHEN Z S,ZHOU J L,et al. The science of science:from the perspective of complex systems[J]. Physics Reports,2017,714/715:1 doi: 10.1016/j.physrep.2017.10.001
|
[82] |
周建林,牛琪锴,曾安,等. 基于复杂网络视角的科学文献数据分析[J]. 科技导报,2018,36(8):55
|
[83] |
YAO L Y,WEI T,ZENG A,et al. Ranking scientific publications:the effect of nonlinearity[J]. Scientific Reports,2014,4:6663 doi: 10.1038/srep06663
|
[84] |
ZHOU J L,ZENG A,FAN Y,et al. Ranking scientific publications with similarity-preferential mechanism[J]. Scientometrics,2016,106(2):805 doi: 10.1007/s11192-015-1805-1
|
[85] |
WANG Y N,ZENG A,FAN Y,et al. Ranking scientific publications considering the aging characteristics of citations[EB/OL]. (2019-05-24)[2023-04-02]. https://link.springer.com/article/10.1007/s11192-019-03117-9
|
[86] |
NIU Q K,ZHOU J L,ZENG A,et al. Which publication is your representative work?[J]. Journal of Informetrics,2016,10(3):842 doi: 10.1016/j.joi.2016.06.001
|
[87] |
CUI H C,ZENG A,FAN Y,et al. Identifying the key reference of a scientific publication[EB/OL]. (2020-06-21)[2023-04-03]. https://link.springer.com/article/10.1007/s11518-020-5455-3
|
[88] |
SHEN Z S,YANG L Y,PEI J S,et al. Interrelations among scientific fields and their relative influences revealed by an input-output analysis[J]. Journal of Informetrics,2016,10(1):82 doi: 10.1016/j.joi.2015.11.002
|
[89] |
SONG D Q,WANG W P,FAN Y,et al. Quantifying the structural and temporal characteristics of negative links in citation networks[J]. Information Processing and Management,2022,59(4):102996 doi: 10.1016/j.ipm.2022.102996
|
[90] |
ZHOU J L,ZENG A,FAN Y,et al. Identifying important scholars via directed scientific collaboration networks[J]. Scientometrics,2018,114(3):1327 doi: 10.1007/s11192-017-2619-0
|
[91] |
ZENG A,FAN Y,DI Z R,et al. Fresh teams are associated with original and multidisciplinary research[J]. Nature Human Behaviour,2021,5(10):1314 doi: 10.1038/s41562-021-01084-x
|
[92] |
WANG F H,FAN Y,ZENG A,et al. A nonlinear collective credit allocation in scientific publications[J]. Scientometrics,2019,119(3):1655 doi: 10.1007/s11192-019-03107-x
|
[93] |
XING Y M,WANG F H,ZENG A,et al. Solving the cold-start problem in scientific credit allocation[J]. Journal of Informetrics,2021,15(3):101157 doi: 10.1016/j.joi.2021.101157
|
[94] |
ZENG A,SHEN Z S,ZHOU J L,et al. Increasing trend of scientists to switch between topics[J]. Nature Communications,2019,10:3439 doi: 10.1038/s41467-019-11401-8
|
[95] |
ZENG A,FAN Y,DI Z R,et al. Impactful scientists have higher tendency to involve collaborators in new topics[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(33):e2207436119
|
[96] |
LI H Y,WU M J,WANG Y G,et al. Bibliographic coupling networks reveal the advantage of diversification in scientific projects[J]. Journal of Informetrics,2022,16(3):101321 doi: 10.1016/j.joi.2022.101321
|
[97] |
GENG Z J,ZHANG Y W,LU B,et al. Network-synchronization analysis reveals the weakening tropical circulations[J]. Geophysical Research Letters,2021,48(11):e2021GL093582 doi: 10.1029/2021GL093582
|
[98] |
FAN J F,MENG J,LUDESCHER J,et al. Network-based approach and climate change benefits for forecasting the amount of Indian monsoon rainfall[J]. Journal of Climate,2022,35(3):1009 doi: 10.1175/JCLI-D-21-0063.1
|
[99] |
YAN X Y,FAN Y,DI Z R,et al. Efficient learning strategy of Chinese characters based on network approach[J]. PLoS One,2013,8(8):e69745 doi: 10.1371/journal.pone.0069745
|
[100] |
LIN G Q,AO B,CHEN J W,et al. Modeling and controlling the two-phase dynamics of the p53 network:a Boolean network approach[J]. New Journal of Physics,2014,16:125010 doi: 10.1088/1367-2630/16/12/125010
|