• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于本征微观态分析的孤独症儿童脑功能网络异常机制研究

刘天航 陈曦 任昊达 廖旭红

刘天航, 陈曦, 任昊达, 廖旭红. 基于本征微观态分析的孤独症儿童脑功能网络异常机制研究[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 776-784. doi: 10.12202/j.0476-0301.2023159
引用本文: 刘天航, 陈曦, 任昊达, 廖旭红. 基于本征微观态分析的孤独症儿童脑功能网络异常机制研究[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 776-784. doi: 10.12202/j.0476-0301.2023159
LIU Tianhang, CHEN Xi, REN Haoda, LIAO Xuhong. Alterations in functional connectivity in children with autism spectrum disorder: an eigen-microstate analysis-based functional MRI study[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 776-784. doi: 10.12202/j.0476-0301.2023159
Citation: LIU Tianhang, CHEN Xi, REN Haoda, LIAO Xuhong. Alterations in functional connectivity in children with autism spectrum disorder: an eigen-microstate analysis-based functional MRI study[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 776-784. doi: 10.12202/j.0476-0301.2023159

基于本征微观态分析的孤独症儿童脑功能网络异常机制研究

doi: 10.12202/j.0476-0301.2023159
基金项目: 国家自然科学基金资助项目(81971690,11835003);北京师范大学仲英青年学者基金资助项目
详细信息
    通讯作者:

    廖旭红(1983—),女,副教授. 研究方向:基于神经影像的复杂脑网络计算建模与儿童脑发育应用研究. E-mail: liaoxuhong@bnu.edu.cn

  • 中图分类号: N949

Alterations in functional connectivity in children with autism spectrum disorder: an eigen-microstate analysis-based functional MRI study

  • 摘要: 基于神经影像的人脑连接组学研究表明,孤独症患者脑功能网络连接模式呈现异常特征.然而,以往研究主要集中在静态功能连接方面,孤独症患者脑功能网络连接模式的多样性及其异常特征仍有待进一步阐明.本研究采用45名6~10岁男性儿童(27名孤独症和18名正常发育儿童)的静息态功能磁共振影像,开展了全脑功能活动时间序列的本征微观态分析.研究发现,正常发育儿童与孤独症儿童的全脑自发功能活动均由6个活动模态所主导.每个主导模态具有不同的空间分布特征,并且对应于一种功能系统依赖的连接模式.相较于正常发育儿童,孤独症儿童在第一、第二以及第四主导模态上呈现功能连接的异常增强或者减弱,主要涉及视觉网络内连接,以及背侧注意网络与额顶网络、默认网络和视觉网络之间的连接.这些结果表明,孤独症儿童脑功能网络的异常连接模式存在多样性,为深入理解孤独症脑网络异常机制提供了新颖见解.

     

  • 图  1  正常发育儿童与孤独症儿童的功能活动的主导模态

    a. 正常发育儿童前30个基本模态的权重,虚线标记肘点位置;b. 孤独症儿童前30个基本模态的权重,虚线标记肘点位置;c. 两组儿童的主导模态之间的空间相似性;d. 正常发育儿童与孤独症儿童的主导模态的空间分布,主导模态的脑图由可视化软件BrainNet Viewer生成[27],脑图上的黑色轮廓线对应先验7个功能系统划分[25],红、蓝2个矩形标注组间对应出现翻转的2个主导模态.

    图  2  正常发育儿童与孤独症儿童功能活动的各主导模态对应的功能连接模式(系统水平)

    每个主导模态对应的功能连接模式定义为该主导模态中所有脑节点对之间的共激活模式.对于孤独症儿童,调整第3个与第4个主导模态的排序,以保持与正常发育儿童的空间对应性.

    图  3  相较正常发育儿童,孤独症儿童脑功能网络的异常连接模式

    a. 孤独症儿童在系统水平的连接模式差异;b. 孤独症儿童异常功能连接的空间分布.图中红色表明孤独症儿童的共激活模式高于正常发育儿童,蓝色表明孤独症儿童的共激活模式低于正常发育儿童.a中,*标注显著差异(P < 0.05,FDR校正);b中呈现各脑节点涉及的显著改变连接的数量,这些连接满足P < 0.05,FDR校正.

    表  1  儿童受试者的人口统计学信息

    参数 ASD (n = 27) TD (n = 18) P组间对比1)
    年龄/岁 7.1~10.9 (9.2±1.2) 6.5~10.8 (9.1±1.4) 0.80
    全量表智商 80~138 (109.2±17.8) 76~148 (112.3±12.5) 0.50
    头动/mm2) 0.03~0.19 (0.10±0.05) 0.02~0.12 (0.06±0.02) 0.43
    1)基于双样本t检验;2)头动指标采用平均逐帧位移.每个指标均给出数值范围以及均值与标准差.
    下载: 导出CSV
  • [1] American Psychiatric Association. Diagnostic and statistical manual of mental disorders[M]. 5th ed. Arlington,VA:American Psychiatric Publishing,2013
    [2] LORD C,BRUGHA T S,CHARMAN T,et al. Autism spectrum disorder[J]. Nature Reviews Disease Primers,2020,6:5 doi: 10.1038/s41572-019-0138-4
    [3] DI MARTINO A,FAIR D A,KELLY C,et al. Unraveling the miswired connectome:a developmental perspective[J]. Neuron,2014,83(6):1335 doi: 10.1016/j.neuron.2014.08.050
    [4] HULL J V,DOKOVNA L B,JACOKES Z J,et al. Resting-state functional connectivity in autism spectrum disorders:a review[J]. Frontiers in Psychiatry,2017,7:205 doi: 10.3389/fpsyt.2016.00205
    [5] LYNCH C J,UDDIN L Q,SUPEKAR K,et al. Default mode network in childhood autism:posteromedial cortex heterogeneity and relationship with social deficits[J]. Biological Psychiatry,2013,74(3):212 doi: 10.1016/j.biopsych.2012.12.013
    [6] CHENG W,ROLLS E T,GU H G,et al. Autism:reduced connectivity between cortical areas involved in face expression,theory of mind,and the sense of self[J]. Brain,2015,138(5):1382 doi: 10.1093/brain/awv051
    [7] PRETI M G,BOLTON T A,VAN DE VILLE D. The dynamic functional connectome:state-of-the-art and perspectives[J]. NeuroImage,2017,160:41 doi: 10.1016/j.neuroimage.2016.12.061
    [8] LIAO X H,CAO M,XIA M R,et al. Individual differences and time-varying features of modular brain architecture[J]. NeuroImage,2017,152:94 doi: 10.1016/j.neuroimage.2017.02.066
    [9] LIAO X H,YUAN L,ZHAO T,et al. Spontaneous functional network dynamics and associated structural substrates in the human brain[J]. Frontiers in Human Neuroscience,2015,9:478
    [10] ALLEN E A,DAMARAJU E,PLIS S M,et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cerebral Cortex,2014,24(3):663 doi: 10.1093/cercor/bhs352
    [11] FALAHPOUR M,THOMPSON W K,ABBOTT A E,et al. Underconnected,but not broken? dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time[J]. Brain Connectivity,2016,6(5):403 doi: 10.1089/brain.2015.0389
    [12] WATANABE T,REES G. Brain network dynamics in high-functioning individuals with autism[J]. Nature Communications,2017,8:16048 doi: 10.1038/ncomms16048
    [13] XIE Y P,XU Z L,XIA M R,et al. Alterations in connectome dynamics in autism spectrum disorder:a harmonized mega- and meta-analysis study using the autism brain imaging data exchange dataset[J]. Biological Psychiatry,2022,91(11):945 doi: 10.1016/j.biopsych.2021.12.004
    [14] SUN Y,HU G K,ZHANG Y W,et al. Eigen microstates and their evolutions in complex systems[J]. Communications in Theoretical Physics,2021,73(6):065603 doi: 10.1088/1572-9494/abf127
    [15] CHEN X,REN H D,TANG Z H,et al. Leading basic modes of spontaneous activity drive individual functional connectivity organization in the resting human brain[J]. Communications Biology,2023,6:892 doi: 10.1038/s42003-023-05262-7
    [16] DI MARTINO A,YAN C G,LI Q,et al. The autism brain imaging data exchange:towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular Psychiatry,2014,19(6):659 doi: 10.1038/mp.2013.78
    [17] GALVÁN A. The neuroscience of adolescence[M]. Los Angeles:Cambridge University Press,2018
    [18] POWER J D,BARNES K A,SNYDER A Z,et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion[J]. NeuroImage,2012,59(3):2142 doi: 10.1016/j.neuroimage.2011.10.018
    [19] CAMERON C,YASSINE B,CARLTON C,et al. The Neuro Bureau Preprocessing Initiative:open sharing of preprocessed neuroimaging data and derivatives[J]. Frontiers in Neuroinformatics,2013,7:41
    [20] ASHBURNER J,FRISTON K J. Unified segmentation[J]. NeuroImage,2005,26(3):839 doi: 10.1016/j.neuroimage.2005.02.018
    [21] FRISTON K J,WILLIAMS S,HOWARD R,et al. Movement-Related effects in fMRI time-series[J]. Magnetic Resonance in Medicine,1996,35(3):346 doi: 10.1002/mrm.1910350312
    [22] YAN C G,CHEUNG B,KELLY C,et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics[J]. NeuroImage,2013,76:183 doi: 10.1016/j.neuroimage.2013.03.004
    [23] SCHAEFER A,KONG R,GORDON E M,et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cerebral Cortex,2018,28(9):3095 doi: 10.1093/cercor/bhx179
    [24] SATOPAA V,ALBRECHT J,IRWIN D,et al. Finding a “kneedle” in a haystack:detecting knee points in system behavior[C]//2011 31st International Conference on Distributed Computing Systems Workshops,June 20-24,2011,Minneapolis,MN,USA:IEEE,2011:166
    [25] YEO B T,KRIENEN F M,SEPULCRE J,et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. Journal of Neurophysiology,2011,106(3):1125 doi: 10.1152/jn.00338.2011
    [26] BENJAMINI Y,HOCHBERG Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society:Series B (Methodological),1995,57(1):289
    [27] XIA M R,WANG J H,HE Y. BrainNet Viewer:a network visualization tool for human brain connectomics[J]. PLoS One,2013,8(7):e68910 doi: 10.1371/journal.pone.0068910
    [28] HUTCHISON R M,MORTON J B. Tracking the brain’s functional coupling dynamics over development[J]. The Journal of Neuroscience,2015,35(17):6849 doi: 10.1523/JNEUROSCI.4638-14.2015
    [29] LÓPEZ-VICENTE M,AGCAOGLU O,PÉREZ-CRESPO L,et al. Developmental changes in dynamic functional connectivity from childhood into adolescence[J]. Frontiers in Systems Neuroscience,2021,15:724805 doi: 10.3389/fnsys.2021.724805
    [30] GIOVANNI P,MARCO Z,MAURIZIO C. The secret life of predictive brains:what’s spontaneous activity for?[J]. Trends in Cognitive Sciences,2021,25(9):730. doi: 10.1016/j.tics.2021.05.007
    [31] XIA Y M,XIA M R,LIU J,et al. Development of functional connectome gradients during childhood and adolescence[J]. Science Bulletin,2022,67(10):1049 doi: 10.1016/j.scib.2022.01.002
    [32] ROBERTSON C E,BARON-COHEN S. Sensory perception in autism[J]. Nature Reviews Neuroscience,2017,18(11):671 doi: 10.1038/nrn.2017.112
    [33] UDDIN L Q. Brain mechanisms supporting flexible cognition and behavior in adolescents with autism spectrum disorder[J]. Biological Psychiatry,2021,89(2):172 doi: 10.1016/j.biopsych.2020.05.010
    [34] BUCKNER R L,DINICOLA L M. The brain’s default network:updated anatomy,physiology and evolving insights[J]. Nature Reviews Neuroscience,2019,20(10):593 doi: 10.1038/s41583-019-0212-7
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  47
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回