• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探究玻璃态物质中的隐藏有序性

杨锋 马琳 杨晓东 武振伟

杨锋, 马琳, 杨晓东, 武振伟. 探究玻璃态物质中的隐藏有序性[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 734-739. doi: 10.12202/j.0476-0301.2023160
引用本文: 杨锋, 马琳, 杨晓东, 武振伟. 探究玻璃态物质中的隐藏有序性[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 734-739. doi: 10.12202/j.0476-0301.2023160
YANG Feng, MA Lin, YANG Xiaodong, WU Zhenwei. Probing the hidden order in glasses[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 734-739. doi: 10.12202/j.0476-0301.2023160
Citation: YANG Feng, MA Lin, YANG Xiaodong, WU Zhenwei. Probing the hidden order in glasses[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 734-739. doi: 10.12202/j.0476-0301.2023160

探究玻璃态物质中的隐藏有序性

doi: 10.12202/j.0476-0301.2023160
基金项目: 国家自然科学基金资助项目(11804027)
详细信息
    通讯作者:

    武振伟(1988—),男,博士,副教授,博导. 研究方向:无序与玻璃系统物理. E-mail:zwwu@bnu.edu.cn

  • 中图分类号: O4

Probing the hidden order in glasses

  • 摘要: 通过探究玻璃态物质中原子结构的径向空间关联形式及对应的晶体相晶格结构,发现它们之间存在密切联系,这一特点通过数值模拟和实验所获得的玻璃材料都得到了很好的验证.相关结果表明,结构同源性同样存在于玻璃固体与其对应晶体相之间,进而提出了从同源性视角出发探讨非晶物理与材料学的问题,可为更深入地理解玻璃固体中的原子结构及其结构物性关系提供新的思路.

     

  • 图  1  温度T = 300 K时玻璃态Ni和Fe的原子结构PCF曲线及相关结果显示

    注:a和b分别是温度为300 K时,通过MD模拟得到的玻璃态g-Ni和g-Fe及晶体态c-Ni和c-Fe的原子空间关联函数;c和d分别为对应样品角分布信息;e为玻璃与晶体的典型原子结构构型.

    图  2  玻璃态g-Ni和g-Fe的约化PCF、fcc与bcc完美晶格结构中的固有特征线

    注:特征线高度等比例缩小至如图所示的高度以方便比较.

    图  3  通过MD模拟获得的玻璃态Zr65Al30Cu5的总体PCF

    表  1  原子空间PCF中的第1峰峰位$ {\mathit{R}}_{1} $$ {\mathit{R}}_{\mathit{i}}/{\mathit{R}}_{1} $

    玻璃态/非晶态 R1/nm R2/R1 R3/R1 R4/R1 R5/R1
    Ni glass 0.245 1.74($ \sqrt{3} $) 1.98($ \sqrt{4} $) 2.63($ \sqrt{7} $) 3.46($ \sqrt{12} $)
    Fe glass 0.248 1.65($ \sqrt{8/3} $) 2.00($ \sqrt{4} $) 2.58($ \sqrt{20/3} $) 3.47($ \sqrt{12} $)
    Amorphous Si 0.238 1.61($ \sqrt{8/3} $) 2.42($ \thickapprox\sqrt{19/3} $) 2.91($\thickapprox\sqrt{8} $) 3.12($ \thickapprox\sqrt{9} $)
      注:Ni glass和Fe glass数据来源于MD模拟;Amorphous Si的数据则取自实际实验室衍射数据[23]
    下载: 导出CSV

    表  2  fcc(F)、bcc(B)和金刚石晶格结构的相对原子位置信息

    类别 $ {\mathit{R}}_{1}^{0} $ $ {\mathit{R}}_{2}^{0} $ $ {\mathit{R}}_{3}^{0} $ $ {\mathit{R}}_{4}^{0} $ $ {\mathit{R}}_{5}^{0} $ $ {\mathit{R}}_{6}^{0} $ $ {\mathit{R}}_{7}^{0} $ $ {\mathit{R}}_{8}^{0} $ $ {\mathit{R}}_{9}^{0} $ $ {\mathit{R}}_{10}^{0} $ $ {\mathit{R}}_{11}^{0} $ $ {\mathit{R}}_{12}^{0} $ $ {\mathit{R}}_{13}^{0} $ $ {\mathit{R}}_{14}^{0} $
    F 1 $ \sqrt{2} $ $ \sqrt{3} $ $ \sqrt{4} $ $ \sqrt{5} $ $ \sqrt{6} $ $ \sqrt{7} $ $ \sqrt{8} $ $ \sqrt{9} $ $ \sqrt{10} $ $ \sqrt{11} $ $ \sqrt{12} $ $ \sqrt{13} $ $ \sqrt{15} $
    B 1 $ \sqrt{4/3} $ $ \sqrt{8/3} $ $ \sqrt{11/3} $ $ \sqrt{4} $ $ \sqrt{16/3} $ $ \sqrt{19/3} $ $ \sqrt{20/3} $ $ \sqrt{8} $ $ \sqrt{9} $ $ \sqrt{32/3} $ $ \sqrt{35/3} $ $ \sqrt{12} $ $ \sqrt{40/3} $
    D 1 $ \sqrt{8/3} $ $ \sqrt{11/3} $ $ \sqrt{16/3} $ $ \sqrt{19/3} $ $ \sqrt{8} $ $ \sqrt{9} $ $ \sqrt{32/3} $ $ \sqrt{35/3} $ $ \sqrt{40/3} $ $ \sqrt{43/3} $ $ \sqrt{16} $ $ \sqrt{17} $ $ \sqrt{56/3} $
      注: $ {R}_{1}^{0} $被设定为1;$ {R}_{i}^{0} $ ($i = 1,2,\cdots,14 $)是第$ i $近邻原子的相对距离.
    下载: 导出CSV

    表  3  各种金属玻璃PCF的第1峰位$ {\mathit{R}}_{1} $和约化后的第2峰位$ {\mathit{R}}_{2}/{\mathit{R}}_{1} $,以及这些金属玻璃经退火后的结晶析出相

    金属玻璃 R1/nm R2/R1 退火后的晶体析出相 参考文献
    Zr44.5Al10Cu20Ni8 Ti7.5 0.304 1.68 CuZr2 (bcc-type)
    NiZr2 (bcc-type)
    CuZr (bcc-type)
    NiZr (bcc-type)
    Fe (bcc-type)
    [26]
    Zr57Al10Cu20Ni8 Ti5 0.311 1.66 [26]
    Zr58Al10Cu20Ni8 Ti4 0.311 1.68 [26]
    Zr59Al10Cu20Ni8 Ti3 0.311 1.66 [26]
    Zr60Al10Cu20Ni8 Ti2 0.312 1.67 [26]
    Fe82B18 0.257 1.65 [2728]
    Cu60Zr30Ti10 0.269 1.74 CuTi (fcc-type)
    MgZn-type (hcp)
    Al (fcc-type)
    [2930]
    Zr41Ti14Cu12.5Ni10Be22.5 0.272 1.73 [3031]
    Cu47Ti33Zr11Ni8Si1 0.275 1.74 [32]
    Al90Fe5Nb5 0.315 1.74 [33]
    下载: 导出CSV
  • [1] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展,2013,33(5):177
    [2] ANDERSON P W. Through the glass lightly[J]. Science,1995,267(5204):1615 doi: 10.1126/science.267.5204.1615.c
    [3] DEBENEDETTI P G,STILLINGER F H. Supercooled liquids and the glass transition[J]. Nature,2001,410(6825):259 doi: 10.1038/35065704
    [4] CHENG Y Q,MA E. Atomic-level structure and structure-property relationship in metallic glasses[J]. Progress in Materials Science,2011,56(4):379 doi: 10.1016/j.pmatsci.2010.12.002
    [5] YAVARI A R. A new order for metallic glasses[J]. Nature,2006,439(7075):405 doi: 10.1038/439405a
    [6] ZENG Q,SHENG H,DING Y,et al. Long-range topological order in metallic glass[J]. Science,2011,332(6036):1404 doi: 10.1126/science.1200324
    [7] SHENG H W,LUO W K,ALAMGIR F M,et al. Atomic packing and short-to-medium-range order in metallic glasses[J]. Nature,2006,439(7075):419 doi: 10.1038/nature04421
    [8] LI M Z,WANG C Z,HAO S G,et al. Structural heterogeneity and medium-range order in Zr x Cu100– x metallic glasses[J]. Physical Review B,2009,80(18):184201 doi: 10.1103/PhysRevB.80.184201
    [9] BERNAL J D. Geometry of the structure of monatomic liquids[J]. Nature,1960,185(4706):68 doi: 10.1038/185068a0
    [10] GASKELL P H. A new structural model for transition metal–metalloid glasses[J]. Nature,1978,276(5687):484 doi: 10.1038/276484a0
    [11] ZALLEN R. The physics of amorphous solids[M]. New York:John Wiley,1983
    [12] WANG W H. Dynamic relaxations and relaxation-property relationships in metallic glasses[J]. Progress in Materials Science,2019,106:100561 doi: 10.1016/j.pmatsci.2019.03.006
    [13] HIRATA A,GUAN P F,FUJITA T,et al. Direct observation of local atomic order in a metallic glass[J]. Nature Materials,2011,10(1):28 doi: 10.1038/nmat2897
    [14] MA D,STOICA A D,WANG X L. Power-law scaling and fractal nature of medium-range order in metallic glasses[J]. Nature Materials,2009,8(1):30 doi: 10.1038/nmat2340
    [15] LIU X J,XU Y,HUI X,et al. Metallic liquids and glasses:atomic order and global packing[J]. Physical Review Letters,2010,105(15):155501 doi: 10.1103/PhysRevLett.105.155501
    [16] WU Z W,LI M Z,WANG W H,et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses[J]. Nature Communications,2015,6:6035 doi: 10.1038/ncomms7035
    [17] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics,1995,117(1):1 doi: 10.1006/jcph.1995.1039
    [18] FOILES S M,BASKES M I,DAW M S. Embedded-atom-method functions for the fcc metals Cu,Ag,Au,Ni,Pd,Pt,and their alloys[J]. Physical Review B,1986,33(12):7983 doi: 10.1103/PhysRevB.33.7983
    [19] MENDELEV M I,HAN S,SROLOVITZ D J,et al. Development of new interatomic potentials appropriate for crystalline and liquid iron[J]. Philosophical Magazine,2003,83(35):3977 doi: 10.1080/14786430310001613264
    [20] CHENG Y Q,MA E,SHENG H W. Atomic level structure in multicomponent bulk metallic glass[J]. Physical Review Letters,2009,102(24):245501 doi: 10.1103/PhysRevLett.102.245501
    [21] PAN S P,QIN J Y,WANG W M,et al. Origin of splitting of the second peak in the pair-distribution function for metallic glasses[J]. Physical Review B,2011,84(9):092201 doi: 10.1103/PhysRevB.84.092201
    [22] VOLOSHIN V P,NABERUKHIN Y I. On the origin of the splitting of the second maximum in the radial distribution function of amorphous solids[J]. Journal of Structural Chemistry,1997,38(1):62 doi: 10.1007/BF02768808
    [23] TREACY M M J,BORISENKO K B. The local structure of amorphous silicon[J]. Science,2012,335(6071):950 doi: 10.1126/science.1214780
    [24] ZHOU X W,JOHNSON R A,WADLEY H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B,2004,69(14):144113 doi: 10.1103/PhysRevB.69.144113
    [25] FINNEY J L. Random packings and the structure of simple liquids:I. The geometry of random close packing[J]. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences,1970,319(1539):479 doi: 10.1098/rspa.1970.0189
    [26] MATTERN N,KÜHN U,HERMANN H,et al. Short-range order of Zr62− x Ti x Al10Cu20Ni8 bulk metallic glasses[J]. Acta Materialia,2002,50(2):305 doi: 10.1016/S1359-6454(01)00341-X
    [27] YAMADA M,TERASHIMA Y,TANAKA K. X-ray diffraction study of local atomic structures in amorphous Nd-Fe-B alloys[J]. Materials Transactions,JIM,1993,34(10):895
    [28] YAO B,SU W H,LI F S,et al. Phase transition from Fe3B to Fe2B under high pressure[J]. Journal of Materials Science Letters,1997,16(24):1991 doi: 10.1023/A:1018527810009
    [29] KASAI M,SAIDA J,MATSUSHITA M,et al. Structure and crystallization of rapidly quenched Cu(Zr or Hf)Ti alloys containing nanocrystalline particles[J]. Journal of Physics:Condensed Matter,2002,14(50):13867 doi: 10.1088/0953-8984/14/50/312
    [30] HUI X,FANG H Z,CHEN G L,et al. Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy[J]. Acta Materialia,2009,57(2):376 doi: 10.1016/j.actamat.2008.09.022
    [31] SCHNEIDER S,THIYAGARAJAN P,JOHNSON W L. Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy[J]. Applied Physics Letters,1996,68(4):493 doi: 10.1063/1.116377
    [32] BEDNARCIK J,VENKATARAMAN S,KHVOSTIKOVA O,et al. Microstructural changes induced by thermal treatment in Cu47Ti33Zr11Ni8Si1 metallic glass[J]. Materials Science and Engineering: A,2008,498(1/2):335
    [33] PINEDA E,BONEU F,BRUNA P,et al. Structural evolution of metallic glasses during annealing through in situ synchrotron X-ray diffraction[J]. Journal of Non-Crystalline Solids,2008,354(47/48/49/50/51):5140
    [34] MAKAROV A S,KHONIK V A,MITROFANOV Y P,et al. Interrelationship between the shear modulus of a metallic glass,concentration of frozen-in defects,and shear modulus of the parent crystal[J]. Applied Physics Letters,2013,102(9):091908 doi: 10.1063/1.4794987
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  35
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回