邹然, 柳杨, 李聪, 张怡娇, 胡延庆. 图表示学习综述[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 716-724. DOI: 10.12202/j.0476-0301.2023172
引用本文: 邹然, 柳杨, 李聪, 张怡娇, 胡延庆. 图表示学习综述[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 716-724. DOI: 10.12202/j.0476-0301.2023172
ZOU Ran, LIU Yang, LI Cong, ZHANG Yijiao, HU Yanqing. Graph representation learning: a review[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 716-724. DOI: 10.12202/j.0476-0301.2023172
Citation: ZOU Ran, LIU Yang, LI Cong, ZHANG Yijiao, HU Yanqing. Graph representation learning: a review[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 716-724. DOI: 10.12202/j.0476-0301.2023172

图表示学习综述

Graph representation learning: a review

  • 摘要: 鉴于图表示学习是一种将图结构转化为向量表示的方法,探讨了其在社交网络、生物网络、贸易网络和计算机网络等各个领域的应用情况;为了梳理图表示学习的发展历程,用全面的视角了解不同方法以及相关应用,综述了图嵌入和图神经网络这2类重要的图表示学习的研究进展;详细介绍了其中几个经典的算法;重点阐述了图表示学习在生化医疗领域的应用;深入讨论了图表示学习领域所面临的难点和挑战以及未来可能的研究方向.

     

    Abstract: As a method that converts graph structure into vector representations, graph representation learning has gained significant attention in recent years in various fields such as social networks, biological networks, world trade webs, and computer networks. To document the development of graph representation learning, and to provide a comprehensive overview of different methods and their related applications, the present work summarizes progress in two important categories of graph representation learning: graph embedding and graph neural networks. A detailed overview of several classical algorithms is presented. Application of graph representation learning is introduced in biology, chemistry, and medicine. Challenges and future directions that graph representation learning faces are discussed.

     

/

返回文章
返回