[1] |
PEROZZI B,AL-RFOU R,SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining,August 24-27,2014,New York,New York,USA. New York:ACM,2014:701
|
[2] |
GROVER A,LESKOVEC J. Node2Vec:scalable feature learning for networks[J]. KDD:Proceedings International Conference on Knowledge Discovery & Data Mining,2016,2016:855
|
[3] |
TANG J,QU M,WANG M Z,et al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York:ACM,2015:1067
|
[4] |
KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].(2017-04-22)[2023-02-11]. https://arxiv.org/abs/1609.02907
|
[5] |
HAMILTON W L,YING R,LESKOVEC J. Inductive representation learning on large graphs [EB/OL]. (2017-12-04)[2023-02-11]. https://dl.acm.org/doi/10.5555/3294771.3294869
|
[6] |
VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al. Graph attention networks[EB/OL]. (2018-02-04)[2023-02-12].https://arxiv.org/abs/1710.10903
|
[7] |
CUI P,WANG X,PEI J,et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering,2019,31(5):833 doi: 10.1109/TKDE.2018.2849727
|
[8] |
ZHANG D K,YIN J,ZHU X Q,et al. Network representation learning:a survey[J]. IEEE Transactions on Big Data,2020,6(1):3 doi: 10.1109/TBDATA.2018.2850013
|
[9] |
CAI H Y,ZHENG V W,CHANG K C C. A comprehensive survey of graph embedding:problems,techniques,and applications[J]. IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616 doi: 10.1109/TKDE.2018.2807452
|
[10] |
GOYAL P,FERRARA E. Graph embedding techniques,applications,and performance:a survey[J]. Knowledge-Based Systems,2018,151:78 doi: 10.1016/j.knosys.2018.03.022
|
[11] |
PAN S R,WU J,ZHU X Q,et al. Tri-party deep network representation[EB/OL]. (2010-09-05)[2023-02-11]. https://openreview.net/forum?id=rkbOXHzdbS
|
[12] |
CAO S S,LU W,XU Q K. GraRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,October 18 - 23,2015,Melbourne,Australia. New York:ACM,2015:891
|
[13] |
SHEN X B,PAN S R,LIU W W,et al. Discrete network embedding[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,July 13-19,2018,Stockholm,Sweden. California:International Joint Conferences on Artificial Intelligence Organization,2018:3549
|
[14] |
YANG H,PAN S R,ZHANG P,et al. Binarized attributed network embedding[C]//2018 IEEE International Conference on Data Mining (ICDM),November 17-20,2018. Singapore:IEEE,2019:1476
|
[15] |
WANG D X,CUI P,ZHU W W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 13-17,2016,San Francisco,California,USA. New York:ACM,2016:1225
|
[16] |
CAO S S,LU W,XU Q K. Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York:ACM,2016:1145
|
[17] |
WANG S H,TANG J L,AGGARWAL C,et al. Signed network embedding in social media[C]//Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia,PA:Society for Industrial and Applied Mathematics,2017:327
|
[18] |
BRUNA J,ZAREMBA W,SZLAM A,et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-05-21)[2023-02-11]. https://arxiv.org/abs/1312.6203
|
[19] |
DEFFERRARD M,BRESSON X,VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM,2016:3844
|
[20] |
LI R Y,WANG S,ZHU F Y,et al. Adaptive graph convolutional neural networks[EB/OL]. (2018-04-29)[2023-02-12]. https://ojs.aaai.org/index.php/AAAI/article/view/11691
|
[21] |
LEVIE R,MONTI F,BRESSON X,et al. CayleyNets:graph convolutional neural networks with complex rational spectral filters[J]. IEEE Transactions on Signal Processing,2019,67(1):97 doi: 10.1109/TSP.2018.2879624
|
[22] |
SCARSELLI F,GORI M,TSOI A C,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks,2009,20(1):61 doi: 10.1109/TNN.2008.2005605
|
[23] |
GALLICCHIO C,MICHELI A. Graph echo state networks[C]//The 2010 International Joint Conference on Neural Networks (IJCNN),July 18-23,2010. Barcelona,Spain:IEEE,2010:1
|
[24] |
LI Y J,TARLOW D,BROCKSCHMIDT M,et al. Gated graph sequence neural networks[EB/OL]. (2017-09-22)[2023-02-12]. https://arxiv.org/abs/1511.05493
|
[25] |
SCHLICHTKRULL M,KIPF T N,BLOEM P,et al. Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference. Cham:Springer,2018:593
|
[26] |
ZHANG C X,SONG D J,HUANG C,et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,August 4-8,2019,Anchorage,AK,USA. New York:ACM,2019:793
|
[27] |
WANG X,JI H Y,SHI C,et al. Heterogeneous graph attention network[C]//WWW '19:The World Wide Web Conference,May 13 - 17,2019,San Francisco,CA,USA. New York:ACM,2019:2022
|
[28] |
YUN S,JEONG M,KIM R,et al. Graph transformer networks[EB/OL]. (2020-02-05)[2023-02-12]. https://arxiv.org/abs/1911.06455
|
[29] |
ZHU S C,ZHOU C,PAN S R,et al. Relation structure-aware heterogeneous graph neural network[C]//2019 IEEE International Conference on Data Mining (ICDM),November 8-11,2019. Beijing,China:IEEE,2020:1534
|
[30] |
FU X Y,ZHANG J N,MENG Z Q,et al. MAGNN:metapath aggregated graph neural network for heterogeneous graph embedding[EB/OL]. (2020-04-20)[2023-02-12]. https://dl.acm.org/doi/abs/10.1145/3366423.3380297
|
[31] |
HU Z N,DONG Y X,WANG K S,et al. Heterogeneous graph transformer[EB/OL]. (2020-04-20)[2023-02-12]. https://dl.acm.org/doi/abs/10.1145/3366423.3380027
|
[32] |
HONG H T,GUO H T,LIN Y C,et al. An attention-based graph neural network for heterogeneous structural learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(4):4132 doi: 10.1609/aaai.v34i04.5833
|
[33] |
BATTAGLIA P,PASCANU R,LAI M,et al. Interaction networks for learning about objects,relations and physics[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems,December 5-10,2016,Barcelona,Spain. New York:ACM,2016:4509
|
[34] |
CHANG M B,ULLMAN T,TORRALBA A,et al. A compositional object-based approach to learning physical dynamics[EB/OL]. (2017-03-04)[2023-02-12]. https://arxiv.org/abs/1612.00341
|
[35] |
GILMER J,SCHOENHOLZ S S,RILEY P F,et al. Neural message passing for Quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning - Volume 70,August 6 - 11,2017,Sydney,NSW,Australia. New York:ACM,2017:1263
|
[36] |
DUVENAUD D,MACLAURIN D,AGUILERA-IPARRAGUIRRE J,et al. Convolutional networks on graphs for learning molecular fingerprints[EB/OL]. (2015-11-03)[2023-02-12]. https://arxiv.org/abs/1509.09292
|
[37] |
YUAN S J,WANG C,JIANG Q,et al. Community detection with graph neural network using Markov stability[EB/OL]. (2022-03-01)[2023-02-12]. https://ieeexplore.ieee.org/document/9722614
|
[38] |
HUANG K X,XIAO C,GLASS L M,et al. SkipGNN:predicting molecular interactions with skip-graph networks[J]. Scientific Reports,2020,10:21092 doi: 10.1038/s41598-020-77766-9
|
[39] |
LI Y,QIAO G Y,GAO X,et al. Supervised graph co-contrastive learning for drug-target interaction prediction[J]. Bioinformatics,2022,38(10):2847 doi: 10.1093/bioinformatics/btac164
|
[40] |
LI M,CAI X R,LI L Y,et al. Heterogeneous graph attention network for drug-target interaction prediction[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management,October 17-21,2022,Atlanta,GA,USA. New York:ACM,2022:1166
|
[41] |
BELKIN M,NIYOGI P,SINDHWANI V. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research,2006,7:2399
|
[42] |
WESTON J,RATLE F,COLLOBERT R. Deep learning via semi-supervised embedding[EB/OL]. (2008-07-05)[2023-02-12]. https://dl.acm.org/doi/abs/10.1145/1390156.1390303
|
[43] |
ZHU X J,GHAHRAMANI Z,LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the Twentieth International Conference on International Conference on Machine Learning,August 21 - 24,2003,Washington,DC,USA. New York:ACM,2003:912
|
[44] |
LU Q,GETOOR L. Link-based classification[EB/OL]. (2003-08-21)[2023-02-12]. https://dl.acm.org/doi/10.5555/3041838.3041901
|
[45] |
YANG Z L,COHEN W W,SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. New York:ACM,2016:40
|
[46] |
马腾飞. 图神经网络基础与前沿[M]. 北京:电子工业出版社,2021
|
[47] |
JIN W G,COLEY C W,BARZILAY R,et al. Predicting organic reaction outcomes with Weisfeiler-Lehman network[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM,2017:2604
|
[48] |
LIU C H,KORABLYOV M,JASTRZĘBSKI S,et al. RetroGNN:fast estimation of synthesizability for virtual screening and de novo design by learning from slow retrosynthesis software[J]. Journal of Chemical Information and Modeling,2022,62(10):2293 doi: 10.1021/acs.jcim.1c01476
|
[49] |
LI G H,LUO J W,XIAO Q,et al. Predicting microRNA-disease associations using network topological similarity based on DeepWalk[J]. IEEE Access,2017,5:24032 doi: 10.1109/ACCESS.2017.2766758
|
[50] |
TORNG W,ALTMAN R B. Graph convolutional neural networks for predicting drug-target interactions[J]. Journal of Chemical Information and Modeling,2019,59(10):4131 doi: 10.1021/acs.jcim.9b00628
|
[51] |
LI S L,ZHOU J B,XU T,et al. Structure-aware interactive graph neural networks for the prediction of protein-ligand binding affinity[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,August 14 - 18,2021,Virtual Event,Singapore. New York:ACM,2021:975
|