• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同噪声环境中量子精密测量及其量子模拟实验检验的研究进展

艾清 王洋洋 邱静

艾清, 王洋洋, 邱静. 不同噪声环境中量子精密测量及其量子模拟实验检验的研究进展[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023190
引用本文: 艾清, 王洋洋, 邱静. 不同噪声环境中量子精密测量及其量子模拟实验检验的研究进展[J]. 北京师范大学学报(自然科学版). doi: 10.12202/j.0476-0301.2023190
AI Qing, WANG YangYang, QIU Jing. Quantum metrology in different environments and its experimental verification by quantum simulation[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023190
Citation: AI Qing, WANG YangYang, QIU Jing. Quantum metrology in different environments and its experimental verification by quantum simulation[J]. Journal of Beijing Normal University(Natural Science). doi: 10.12202/j.0476-0301.2023190

不同噪声环境中量子精密测量及其量子模拟实验检验的研究进展

doi: 10.12202/j.0476-0301.2023190
基金项目: 国家自然科学基金资助项目(11674033,11505007);北京市自然科学基金资助项目(1202017);北京师范大学青年教师发展基金资助项目(2022129);陕西省自然科学基础研究计划项目(2023-JC-QN-0092)
详细信息
    通讯作者:

    艾清 (1981—),男,湖南长沙人,副教授. 研究方向:量子物理与量子信息,量子生物学,量子精密测量. E-mail:aiqing@bnu.edu.cn

  • 中图分类号: O413

Quantum metrology in different environments and its experimental verification by quantum simulation

  • 摘要: 量子精密测量利用量子纠缠和量子相干性提高测量精度.本文简要回顾了在各种噪声环境中的量子精密测量方案,包括非马尔科夫噪声、关联噪声、双光子噪声环境等等.另外,量子信息的蓬勃发展让我们能够设计和利用相应的量子模拟实验,从而检验各种量子精密测量理论方案的实验可行性.

     

  • 图  1  马尔科夫噪声下,初始态分别为n量子比特最大纠缠态与直积态的测量误差动力学[4]

    图  2  无噪声、非马尔科夫噪声、马尔科夫噪声下使用最大纠缠态提高的测量精度倍数r与量子比特数n的关系[5]

    图  3  发生单光子耗散时,(a)不同耦合强度下,$ g $方差的倒数$ {F}_{g}\left(t\right) $随时间的演化;(b)$ {F}_{g}\left(t\right) $最大值与能隙关系[15]

    图  4  发生单光子耗散时,不同温度下,$ g $方差的倒数$ {F}_{g}\left(t\right) $随时间的演化(a); $ {F}_{g}\left(t\right) $最大值与温度关系(b)[15]

    图  5  发生双光子耗散时,不同耦合强度下,$ g $方差的倒数$ {F}_{g}\left(t\right) $随时间的演化(a); $ {F}_{g}\left(t\right) $最大值与能隙关系(b)[15]

    图  6  束缚态与量子精密测量的海森堡极限(左)Mach-Zehnder干涉仪,(中上)束缚态几率幅,(中下)总系统的能谱,(右)测量误差动力学[11].

    图  7  用束缚态和Floquet工程克服量子精密测量的止步定理(左一)Floquet工程示意图,(左二)总系统能谱中能带和束缚态与驱动强度A关系,(左三)Fisher信息动力学与驱动强度A关系,(右一)Fisher信息与时间关系 [20].

    图  8  量子模拟马尔科夫噪声(a),非马尔科夫噪声(b)中的精密测量[10].

    图  9  a.上:直积态量子动力学;下:GHZ态量子动力学;b.测量误差动力学[17].

  • [1] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D,1981,23(8):1693 doi: 10.1103/PhysRevD.23.1693
    [2] GIOVANNETTI V,LLOYD S,MACCONE L. Quantum-enhanced measurements:beating the standard quantum limit[J]. Science,2004,306(5700):1330 doi: 10.1126/science.1104149
    [3] BREUER H P,PETRUCCIONE F. The Theory of Open Quantum Systems[M]. New York,USA:Oxford University Press,2007
    [4] HUELGA S F,MACCHIAVELLO C,PELLIZZARI T,et al. Improvement of frequency standards with quantum entanglement[J]. Physical Review Letters,1997,79(20):3865 doi: 10.1103/PhysRevLett.79.3865
    [5] CHIN A W,HUELGA S F,PLENIO M B. Quantum metrology in non-markovian environments[J]. Physical Review Letters,2012,109(23):233601 doi: 10.1103/PhysRevLett.109.233601
    [6] AI Q,LI Y,ZHENG H,et al. Quantum anti-Zeno effect without rotating wave approximation[J]. Physical Review A,2010,81(4):042116 doi: 10.1103/PhysRevA.81.042116
    [7] AI Q,XU D Z,YI S,et al. Quantum anti-Zeno effect without wave function reduction[J]. Scientific Reports,2013,3:1752 doi: 10.1038/srep01752
    [8] HARRINGTON P ,MONROE J ,MURCH K . Quantum zeno effects from measurement controlled qubit-bath interactions[J]. Physical Review Letters,2017,118(24):240401 doi: 10.1103/PhysRevLett.118.240401
    [9] CHEN X Y,ZHANG N N,HE W T,et al. Global correlation and local information flows in controllable non-Markovian open quantum dynamics[J]. NPJ Quantum Information,2022,8:22 doi: 10.1038/s41534-022-00537-z
    [10] HE W T,GUANG H Y,LI Z Y,et al. Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation[J]. Physical Review A,2021,104(6):062429 doi: 10.1103/PhysRevA.104.062429
    [11] BAI K,PENG Z,LUO H G,et al. Retrieving ideal precision in noisy quantum optical metrology[J]. Physical Review Letters,2019,123(4):040402 doi: 10.1103/PhysRevLett.123.040402
    [12] CHU Y M,ZHANG S L,YU B Y,et al. Dynamic framework for criticality-enhanced quantum sensing[J]. Physical Review Letters,2021,126:010502 doi: 10.1103/PhysRevLett.126.010502
    [13] LEGHTAS Z,TOUZARD S,POP I M,et al. Confining the state of light to a quantum manifold by engineered two-photon loss[J]. Science,2015,347(6224):853 doi: 10.1126/science.aaa2085
    [14] MALEKAKHLAGH M,RODRIGUEZ A W. Quantum Rabi model with two-photon relaxation[J]. Physical Review Letters,2019,122(4):043601 doi: 10.1103/PhysRevLett.122.043601
    [15] HE W T,LU C W,YAO Y X,et al. Criticality-based quantum metrology in the presence of decoherence[J]. Frontiers of Physics,2023,18(3):1
    [16] ZHANG N N,TAO M J,HE W T,et al. Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities[J]. Frontiers of Physics,2021,16(5):1
    [17] LONG X Y,HE W T,ZHANG N N,et al. Entanglement-enhanced quantum metrology in colored noise by quantum zeno effect[J]. Physical Review Letters,2022,129(7):070502 doi: 10.1103/PhysRevLett.129.070502
    [18] TAO M J,ZHANG N N,WEN P Y,et al. Coherent and incoherent theories for photosynthetic energy transfer[J]. Science Bulletin,2020,65(4):318 doi: 10.1016/j.scib.2019.12.009
    [19] HWANG M J,PUEBLA R,PLENIO M B. Quantum phase transition and universal dynamics in the Rabi model[J]. Physical Review Letters,2015,115(18):180404 doi: 10.1103/PhysRevLett.115.180404
    [20] BAI S Y,AN J H. Floquet engineering to overcome No-go theorem of noisy quantum metrology[J]. Physical Review Letters,2023,131(5):050801 doi: 10.1103/PhysRevLett.131.050801
    [21] Georgescu I M,Ashhab S,Nori F. Quantum simulation[J]. Review of Modern Physics,2014,86(1):153-185. doi: 10.1103/RevModPhys.86.153
    [22] SOARE A,BALL H,HAYES D,et al. Experimental noise filtering by quantum control[J]. Nature Physics,2014,10(11):825 doi: 10.1038/nphys3115
    [23] LI J,YANG X D,PENG X H,et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters,2017,118(15):150503 doi: 10.1103/PhysRevLett.118.150503
    [24] KHANEJA N,REISS T,KEHLET C,et al. Optimal control of coupled spin dynamics:design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance,2005,172(2):296 doi: 10.1016/j.jmr.2004.11.004
    [25] WANG B X,TAO M J,AI Q,et al. Efficient quantum simulation of photosynthetic light harvesting[J]. NPJ Quantum Information,2018,4:52 doi: 10.1038/s41534-018-0102-2
    [26] AI Q,LIAO J Q. Quantum anti-zeno effect in artificial quantum systems[J]. Communications in Theoretical Physics,2010,54(6):985 doi: 10.1088/0253-6102/54/6/07
    [27] MATSUZAKI Y,BENJAMIN S C,FITZSIMONS J. Magnetic field sensing beyond the standard quantum limit under the effect of decoherence[J]. Physical Review A,2011,84:012103 doi: 10.1103/PhysRevA.84.012103
  • 加载中
图(9)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  3
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 网络出版日期:  2023-11-18

目录

    /

    返回文章
    返回