Quantum metrology in different environments and its experimental verification by quantum simulation
-
摘要: 量子精密测量利用量子纠缠和量子相干性提高测量精度.本文简要回顾了在各种噪声环境中的量子精密测量方案,包括非马尔科夫噪声、关联噪声、双光子噪声环境等等.另外,量子信息的蓬勃发展让我们能够设计和利用相应的量子模拟实验,从而检验各种量子精密测量理论方案的实验可行性.Abstract: Quantum metrology based on quantum entanglement and quantum coherence improves the accuracy of measurement. In this paper, we briefly review the schemes of quantum metrology in various complex environments, including non-Markovian noise, correlated noise, two-photon relaxation. On the other hand, the booming development of quantum information allows us to utilize quantum simulation experiments to test the feasibility of various theoretical schemes and demonstrate the rich physical phenomena in different baths.
-
图 1 马尔科夫噪声下,初始态分别为n量子比特最大纠缠态与直积态的测量误差动力学[4]
图 2 无噪声、非马尔科夫噪声、马尔科夫噪声下使用最大纠缠态提高的测量精度倍数r与量子比特数n的关系[5]
图 3 发生单光子耗散时,(a)不同耦合强度下,
$ g $ 方差的倒数$ {F}_{g}\left(t\right) $ 随时间的演化;(b)$ {F}_{g}\left(t\right) $ 最大值与能隙关系[15].图 4 发生单光子耗散时,不同温度下,
$ g $ 方差的倒数$ {F}_{g}\left(t\right) $ 随时间的演化(a);$ {F}_{g}\left(t\right) $ 最大值与温度关系(b)[15].图 5 发生双光子耗散时,不同耦合强度下,
$ g $ 方差的倒数$ {F}_{g}\left(t\right) $ 随时间的演化(a);$ {F}_{g}\left(t\right) $ 最大值与能隙关系(b)[15].图 6 束缚态与量子精密测量的海森堡极限(左)Mach-Zehnder干涉仪,(中上)束缚态几率幅,(中下)总系统的能谱,(右)测量误差动力学[11].
图 7 用束缚态和Floquet工程克服量子精密测量的止步定理(左一)Floquet工程示意图,(左二)总系统能谱中能带和束缚态与驱动强度A关系,(左三)Fisher信息动力学与驱动强度A关系,(右一)Fisher信息与时间关系 [20].
图 8 量子模拟马尔科夫噪声(a),非马尔科夫噪声(b)中的精密测量[10].
图 9 a.上:直积态量子动力学;下:GHZ态量子动力学;b.测量误差动力学[17].
-
[1] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D,1981,23(8):1693 doi: 10.1103/PhysRevD.23.1693 [2] GIOVANNETTI V,LLOYD S,MACCONE L. Quantum-enhanced measurements:beating the standard quantum limit[J]. Science,2004,306(5700):1330 doi: 10.1126/science.1104149 [3] BREUER H P,PETRUCCIONE F. The Theory of Open Quantum Systems[M]. New York,USA:Oxford University Press,2007 [4] HUELGA S F,MACCHIAVELLO C,PELLIZZARI T,et al. Improvement of frequency standards with quantum entanglement[J]. Physical Review Letters,1997,79(20):3865 doi: 10.1103/PhysRevLett.79.3865 [5] CHIN A W,HUELGA S F,PLENIO M B. Quantum metrology in non-markovian environments[J]. Physical Review Letters,2012,109(23):233601 doi: 10.1103/PhysRevLett.109.233601 [6] AI Q,LI Y,ZHENG H,et al. Quantum anti-Zeno effect without rotating wave approximation[J]. Physical Review A,2010,81(4):042116 doi: 10.1103/PhysRevA.81.042116 [7] AI Q,XU D Z,YI S,et al. Quantum anti-Zeno effect without wave function reduction[J]. Scientific Reports,2013,3:1752 doi: 10.1038/srep01752 [8] HARRINGTON P ,MONROE J ,MURCH K . Quantum zeno effects from measurement controlled qubit-bath interactions[J]. Physical Review Letters,2017,118(24):240401 doi: 10.1103/PhysRevLett.118.240401 [9] CHEN X Y,ZHANG N N,HE W T,et al. Global correlation and local information flows in controllable non-Markovian open quantum dynamics[J]. NPJ Quantum Information,2022,8:22 doi: 10.1038/s41534-022-00537-z [10] HE W T,GUANG H Y,LI Z Y,et al. Quantum metrology with one auxiliary particle in a correlated bath and its quantum simulation[J]. Physical Review A,2021,104(6):062429 doi: 10.1103/PhysRevA.104.062429 [11] BAI K,PENG Z,LUO H G,et al. Retrieving ideal precision in noisy quantum optical metrology[J]. Physical Review Letters,2019,123(4):040402 doi: 10.1103/PhysRevLett.123.040402 [12] CHU Y M,ZHANG S L,YU B Y,et al. Dynamic framework for criticality-enhanced quantum sensing[J]. Physical Review Letters,2021,126:010502 doi: 10.1103/PhysRevLett.126.010502 [13] LEGHTAS Z,TOUZARD S,POP I M,et al. Confining the state of light to a quantum manifold by engineered two-photon loss[J]. Science,2015,347(6224):853 doi: 10.1126/science.aaa2085 [14] MALEKAKHLAGH M,RODRIGUEZ A W. Quantum Rabi model with two-photon relaxation[J]. Physical Review Letters,2019,122(4):043601 doi: 10.1103/PhysRevLett.122.043601 [15] HE W T,LU C W,YAO Y X,et al. Criticality-based quantum metrology in the presence of decoherence[J]. Frontiers of Physics,2023,18(3):1 [16] ZHANG N N,TAO M J,HE W T,et al. Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities[J]. Frontiers of Physics,2021,16(5):1 [17] LONG X Y,HE W T,ZHANG N N,et al. Entanglement-enhanced quantum metrology in colored noise by quantum zeno effect[J]. Physical Review Letters,2022,129(7):070502 doi: 10.1103/PhysRevLett.129.070502 [18] TAO M J,ZHANG N N,WEN P Y,et al. Coherent and incoherent theories for photosynthetic energy transfer[J]. Science Bulletin,2020,65(4):318 doi: 10.1016/j.scib.2019.12.009 [19] HWANG M J,PUEBLA R,PLENIO M B. Quantum phase transition and universal dynamics in the Rabi model[J]. Physical Review Letters,2015,115(18):180404 doi: 10.1103/PhysRevLett.115.180404 [20] BAI S Y,AN J H. Floquet engineering to overcome No-go theorem of noisy quantum metrology[J]. Physical Review Letters,2023,131(5):050801 doi: 10.1103/PhysRevLett.131.050801 [21] Georgescu I M,Ashhab S,Nori F. Quantum simulation[J]. Review of Modern Physics,2014,86(1):153-185. doi: 10.1103/RevModPhys.86.153 [22] SOARE A,BALL H,HAYES D,et al. Experimental noise filtering by quantum control[J]. Nature Physics,2014,10(11):825 doi: 10.1038/nphys3115 [23] LI J,YANG X D,PENG X H,et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters,2017,118(15):150503 doi: 10.1103/PhysRevLett.118.150503 [24] KHANEJA N,REISS T,KEHLET C,et al. Optimal control of coupled spin dynamics:design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance,2005,172(2):296 doi: 10.1016/j.jmr.2004.11.004 [25] WANG B X,TAO M J,AI Q,et al. Efficient quantum simulation of photosynthetic light harvesting[J]. NPJ Quantum Information,2018,4:52 doi: 10.1038/s41534-018-0102-2 [26] AI Q,LIAO J Q. Quantum anti-zeno effect in artificial quantum systems[J]. Communications in Theoretical Physics,2010,54(6):985 doi: 10.1088/0253-6102/54/6/07 [27] MATSUZAKI Y,BENJAMIN S C,FITZSIMONS J. Magnetic field sensing beyond the standard quantum limit under the effect of decoherence[J]. Physical Review A,2011,84:012103 doi: 10.1103/PhysRevA.84.012103 -