Micro-lasers: optical field modulation and application
-
摘要: 微纳激光器是谐振腔尺寸为微/纳米量级的激光器,其模式体积在波长或亚波长尺度,具有小尺寸、易集成、低阈值、宽波段、可调谐等特点,在光芯片上光信息的产生、传输、耦合、调制、探测等功能实现中占据核心位置,是微纳光学领域的重要前沿.微纳激光的光场特性与其应用研究息息相关,为了实现微纳激光光源的多功能化,研究人员从微纳激光光场调控的理论机制和实验测试、器件应用方面展开研究并取得了一系列进展.本文聚焦于这两方面,概述了微纳激光器的相关研究进展,着重阐述了通过泵浦、增益和谐振腔3条研究路径来调控激光性能的方法,总结微纳激光器在传感、防伪、成像与显示等领域的应用进展,并对其发展趋势进行了展望.Abstract: Micro-lasers with micro/nano scale cavities have mode volume at wavelength or sub-wavelength scale, which are characterized with small size, easy integration, low threshold, wide band, tenability. Micro-lasers play a core role in the generation, transmission, coupling, modulation, detection and other functions of optical information on photonic chips, which is an important frontier in the field of micro/ nano optics. The application research of micro-lasers are related to their optical field characteristics. In order to realize the multi-functional application of micro-lasers, studies on optical field modulation of micro-laser have been conducted, referring to theory, experimental and device application. Here, the research progress of micro-lasers are summarized from optical field modulation and application. The modulating methods based on pumping light, gain and micro-cavity are emphatically described. The application progress of micro-lasers in sensing, anti-counterfeiting, imaging and display fields is summarized. And the future research direction is prospeced.
-
图 4 光学谐振腔对准晶激光光场的调控方法
a 制备五重对称准晶的光路示意图;b 投影在玻璃基板背面的五重对称准晶体激光图案;c 激光发射光谱[53].
-
[1] ZHANG W,YAO J N,ZHAO YONG SHENG. Organic micro/nanoscale lasers[J]. Accounts of Chemical Research,2016,49(9):1691 doi: 10.1021/acs.accounts.6b00209 [2] HAO Y Z,WANG F L,TANG M,et al. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity[J]. Photonics Research,2019,7(5):543 doi: 10.1364/PRJ.7.000543 [3] GONG C Y,QIAO Z,YUAN Z Y,et al. Laser modes:topological encoded vector beams for monitoring amyloid-lipid interactions in microcavity[J]. Advanced Science,2021,8(12):2100096 doi: 10.1002/advs.202100096 [4] MAO-QING CHEN,et al. 3D printed castle style Fabry-Perot microcavity on optical fiber tip as a highly sensitive humidity sensor[J]. Sensors and Actuators B:Chemical,2021,328:128981 doi: 10.1016/j.snb.2020.128981 [5] FOGLIANO F,BESGA B,REIGUE A,et al. Mapping the cavity optomechanical interaction with subwavelength-sized ultrasensitive nanomechanical force sensors[J]. Physical Review X,2021,11(2):021009 doi: 10.1103/PhysRevX.11.021009 [6] 翟天瑞,周朴希,牛莲泽. 聚合物分布反馈激光器性能调控的研究进展[J]. 北京工业大学学报,2020,46(6):655 doi: 10.11936/bjutxb2019120026 [7] ZHANG Y S,XU Y F,SHI J Q,et al. Monolithic integrated linear frequency modulated dual-wavelength DFB laser chip with high linearity and its application in long distance ranging[J]. ACS Photonics,2023,10(7):2344 doi: 10.1021/acsphotonics.2c01531 [8] HE L N,ÖZDEMIR Ş K,YANG L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews,2013,7(1):60 [9] REYNOLDS T,RIESEN N,MELDRUM A,et al. Fluorescent and lasing whispering gallery mode microresonators for sensing applications[J]. Laser & Photonics Reviews,2017,11(2):1600265 [10] TOROPOV N,VOLLMER F. Whispering-gallery microlasers for cell tagging and barcoding:the prospects for in vivo biosensing[J]. Light:Science & Applications,2021,10:77 [11] Junhua T,Tianrui Z. 光纤端面随机激光器[J],SCIENTIA SINICA Physica,Mechanica & Astronomica,2023. [12] 刘大禾,石锦卫,陈淑静,等. 极弱散射结构中的随机激光器[J]. 光学学报,2011,31(9):234 [13] 翟天瑞,李松涛,王兆娜,等. 基于等离激元反馈的薄膜随机激光器[J]. 北京工业大学学报,2015,41(12):6 [14] LUAN F,GU B B,GOMES A S L,et al. Lasing in nanocomposite random media[J]. Nano Today,2015,10(2):168 doi: 10.1016/j.nantod.2015.02.006 [15] SHI X Y,SONG W T,GUO D,et al. Selectively visualizing the hidden modes in random lasers for secure communication[J]. Laser & Photonics Reviews,2021,15(10):2100295 [16] ZHAI T R,YAN J H,SHI X Y,et al. Dual chaos encryption for color images enabled in a WGM-random hybrid microcavity[J]. Nanoscale,2022,14(31):11252 doi: 10.1039/D2NR02557D [17] SCHÖNHUBER S,BACHELARD N,LIMBACHER B,et al. All-optical adaptive control of quantum cascade random lasers[J]. Nature Communications,2020,11:5530 doi: 10.1038/s41467-020-19305-8 [18] CHOI J H,CHANG S,KIM K H,et al. Selective pump focusing on individual laser modes in microcavities[J]. ACS Photonics,2018,5(7):2791 doi: 10.1021/acsphotonics.8b00648 [19] KOGELNIK H,SHANK C V. Stimulated emission in a periodic structure[J]. Applied Physics Letters,1971,18(4):152 doi: 10.1063/1.1653605 [20] SHANK C V,BJORKHOLM J E,KOGELNIK H. Tunable distributed-feedback dye laser[J]. Applied Physics Letters,1971,18(9):395 doi: 10.1063/1.1653714 [21] GU F X,XIE F M,LIN X,et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering[J]. Light:Science & Applications,2017,6(10):e17061 [22] MICHELE G,DHRUV S,JACOPO B,et al. A nanophotonic laser on a graph[J]. Nature Communications,2019,10(1):226 doi: 10.1038/s41467-018-08132-7 [23] SAPIENZA R. Controlling random lasing action[J]. Nature Physics,2022,18(9):976 doi: 10.1038/s41567-022-01655-3 [24] LIEW S F,REDDING B,GE L,et al. Active control of emission directionality of semiconductor microdisk lasers[J]. Applied Physics Letters,2014,104(23):231108 doi: 10.1063/1.4883637 [25] BACHELARD N,ANDREASEN J,GIGAN S,et al. Taming random lasers through active spatial control of the pump[J]. Physical Review Letters,2012,109(3):033903 doi: 10.1103/PhysRevLett.109.033903 [26] VANNESTE C,SEBBAH P. Selective excitation of localized modes in active random media[J]. Physical Review Letters,2001,87(18):183903 doi: 10.1103/PhysRevLett.87.183903 [27] SEBBAH P,VANNESTE C. Random laser in the localized regime[J]. Physical Review B,2002,66(14):144202 doi: 10.1103/PhysRevB.66.144202 [28] KUMAR B,HOMRI R,PRIYANKA,et al. Localized modes revealed in random lasers[J]. Optica,2021,8(8):1033 doi: 10.1364/OPTICA.428217 [29] BACHELARD N,GIGAN S,NOBLIN X,et al. Adaptive pumping for spectral control of random lasers[J]. Nature Physics,2014,10(6):426 doi: 10.1038/nphys2939 [30] SAXENA D,ARNAUDON A,CIPOLATO O,et al. Sensitivity and spectral control of network lasers[J]. Nature Communications,2022,13:6493 doi: 10.1038/s41467-022-34073-3 [31] SHI X Y,SONG W T,LIANG N N,et al. Manipulating laser modes in diffusive disordered systems by precisely designing the boundary of the local pump[J]. Laser & Photonics Reviews,2023,17(10):2300188. [32] WANG Z X,MENG X G,CHOI S H,et al. Controlling random lasing with three-dimensional plasmonic nanorod metamaterials[J]. Nano Letters,2016,16(4):2471 doi: 10.1021/acs.nanolett.6b00034 [33] XU Z Y,TONG J H,SHI X Y,et al. Tailoring whispering gallery lasing and random lasing in A compound cavity[J]. Polymers,2020,12(3):656 doi: 10.3390/polym12030656 [34] GE K,SHI X Y,XU Z Y,et al. Full-color WGM lasing in nested microcavities[J]. Nanoscale,2021,13(24):10792 doi: 10.1039/D1NR01052B [35] RUAN J,GUO D,NIU B,et al. Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications[J]. NPG Asia Materials,2022,14:62 doi: 10.1038/s41427-022-00408-1 [36] ZHAO J,YAN Y*,WEI C,et al. Switchable single mode perovskite microlasers modulated by responsive organic microdisks[J]. Nano Letters,2018,18:1241 doi: 10.1021/acs.nanolett.7b04834 [37] FU Y L,ZHAI T R. Distributed feedback organic lasing in photonic crystals[J]. Frontiers of Optoelectronics,2020,13(1):18 doi: 10.1007/s12200-019-0942-1 [38] LIANG J,YAN Y L,ZHAO Y S. Organic microlaser arrays:from materials engineering to optoelectronic applications[J]. Accounts of Materials Research,2021,2(5):340 doi: 10.1021/accountsmr.1c00029 [39] WANG Z N,SHI X Y,WEI S J,et al. Two-threshold silver nanowire-based random laser with different dye concentrations[J]. Laser Physics Letters,2014,11(9):095002 doi: 10.1088/1612-2011/11/9/095002 [40] HAYAT A,TONG J H,CHEN C,et al. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities[J]. Science China Information Sciences,2020,63(8):1 [41] YANG X,TANG S J,MENG J W,et al. Phase-transition microcavity laser[J]. Nano Letters,2023,23(7):3048 doi: 10.1021/acs.nanolett.3c00510 [42] TONG J H,SHI X Y,LI S T,et al Tunable plasmonic random laser based on a wedge shaped resonator[J]. Organic Electronics,2019,75:105337 [43] ZHAI T R,WANG Y L,CHEN L,et al. Red-green-blue laser emission from cascaded polymer membranes[J]. Nanoscale,2015,7(47):19935 doi: 10.1039/C5NR05965H [44] ZHOU Z H,ZHAO J Y,DU Y X,et al. Organic printed core-shell heterostructure arrays:a universal approach to all-color laser display panels[J]. Angewandte Chemie International Edition,2020,59(29):11814 doi: 10.1002/anie.202002580 [45] HU M N,BIAN Y X,SHEN H H,et al. A humidity-tailored film random laser[J]. Organic Electronics,2020,86:105923 doi: 10.1016/j.orgel.2020.105923 [46] Niu B,Shi X Y,Ge K,et al. Microfluidic flowmeter based on tunable polymer WGM laser[J]. Organic Electronics,2022,107:106563 doi: 10.1016/j.orgel.2022.106563 [47] KOGELNIK H,SHANK C V. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics,1972,43(5):2327 doi: 10.1063/1.1661499 [48] ZHANG S,TONG J H,CHEN C,et al. Controlling the performance of polymer lasers via the cavity coupling[J]. Polymers,2019,11(5):764 doi: 10.3390/polym11050764 [49] HAN L T,CHEN C,TONG J H,et al. Manipulating the performance of polymer lasers using diffraction elements[J]. Organic Electronics,2020,84:105813 doi: 10.1016/j.orgel.2020.105813 [50] ZHAI T R,MA X J,HAN L,et al. Self-aligned emission of distributed feedback lasers on optical fiber sidewall[J]. Nanomaterials,2021,11(9):2381 doi: 10.3390/nano11092381 [51] STELLINGA D,PIETRZYK M E,GLACKIN J M E,et al. An organic vortex laser[J]. ACS Nano,2018,12(3):2389 doi: 10.1021/acsnano.7b07703 [52] CUI L B,ZHANG S,LV L Z,et al. Effects of cavity coupling on 1D defect modes:a theoretical model[J]. OSA Continuum,2020,3(6):1408 doi: 10.1364/OSAC.392895 [53] HAYAT A,CUI L B,LIANG H,et al. Colloidal quantum dots lasing and coupling in 2D holographic photonic quasicrystals[J]. Optics Express,2021,29(10):15145 doi: 10.1364/OE.422288 [54] SHI X Y,LIAO Y M,LIN H Y,et al. Dissolvable and recyclable random lasers[J]. ACS Nano,2017,11(8):7600 doi: 10.1021/acsnano.7b00201 [55] PENG B,ÖZDEMIR Ş K,ROTTER S,et al. Loss-induced suppression and revival of lasing[J]. Science,2014,346(6207):328 doi: 10.1126/science.1258004 [56] HODAEI H,MIRI M A,HASSAN A U,et al. Single mode lasing in transversely multi-moded PT-symmetric microring resonators[J]. Laser & Photonics Reviews,2016,10(3):494 [57] GE K,NIU B,LIU F Y,et al. Electrically tunable WGM lasing in a metal-dielectric core-shell hybrid microcavity[J]. Applied Physics Letters,2022,120(23):232201 doi: 10.1063/5.0096732 [58] SONG Q H,ZHANG N,ZHAI H L,et al. The combination of high Q factor and chirality in twin cavities and microcavity chain[J]. Scientific Reports,2014,4:6493 doi: 10.1038/srep06493 [59] ZHAO J,YAN Y,ZHAO Y S*,et al. Research progress on organic micro/nanoscale lasers[J]. SCIENTIA SINICA Chimica,2018,48:127 doi: 10.1360/N032017-00173 [60] DU Y X,ZOU C L,ZHANG C H,et al. Tuneable red,green,and blue single-mode lasing in heterogeneously coupled organic spherical microcavities[J]. Light:Science & Applications,2020,9:151 [61] GE K,RUAN J,CUI L B,et al. Dynamic manipulation of WGM lasing by tailoring the coupling strength[J]. Optics Express,2022,30(16):28752 doi: 10.1364/OE.467945 [62] MA X W,HUANG Y Z,YANG Y D,et al. Mode coupling in hybrid square-rectangular lasers for single mode operation[J]. Applied Physics Letters,2016,109(7):071102 doi: 10.1063/1.4961244 [63] NI Y Q,LI X Y,LIANG W Q,et al. Transformation of random lasing to Fabry-Perot lasing:observation of high temperature lasing from carbon dots[J]. Nanoscale,2021,13(16):7566 doi: 10.1039/D1NR00927C [64] GE K,GUO D,MA X J,et al. Large-area biocompatible random laser for wearable applications[J]. Nanomaterials,2021,11(7):1809 doi: 10.3390/nano11071809 [65] LABRADOR-PÁEZ L,SOLER-CARRACEDO K,HERNÁNDEZ-RODRÍGUEZ M,et al. Liquid whispering-gallery-mode resonator as a humidity sensor[J]. Optics Express,2017,25(2):1165 doi: 10.1364/OE.25.001165 [66] TONG J H,SHI X Y,WANG Y,et al. Flexible plasmonic random laser for wearable humidity sensing[J]. Science China Information Sciences,2021,64(12):1 [67] SHI X Y,GE K,TONG J H,et al. Low-cost biosensors based on a plasmonic random laser on fiber facet[J]. Optics Express,2020,28(8):12233 doi: 10.1364/OE.392661 [68] ZHANG S,SHI X Y,YAN S X,et al. Single-mode lasing in plasmonic-enhanced woven microfibers for multifunctional sensing[J]. ACS Sensors,2021,6(9):3416 doi: 10.1021/acssensors.1c01278 [69] ZHANG S,LIANG N N,SHI X Y,et al. Direction-adjustable single-mode lasing via self-assembly 3D-curved microcavities for gas sensing[J]. ACS Applied Materials & Interfaces,2021,13(38):45916 [70] GAO M M,WEI C,LIN X Q,et al. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors[J]. Chemical Communications,2017,53(21):3102 doi: 10.1039/C6CC08094D [71] GE K,GUO D,NIU B,et al. Pump-controlled RGB single-mode polymer lasers based on a hybrid 2D-3D μ-cavity for temperature sensing[J]. Nanophotonics,2021,10(18):4591 doi: 10.1515/nanoph-2021-0462 [72] XU Z Y,ZHAI T R,SHI X Y,et al. Multifunctional sensing based on an ultrathin transferrable microring laser[J]. ACS Applied Materials & Interfaces,2021,13(16):19324 [73] POLSON R C,VARDENY Z V. Random lasing in human tissues[J]. Applied Physics Letters,2004,85(7):1289 doi: 10.1063/1.1782259 [74] XU Z Y,HONG Q H,GE K,et al. Random lasing from label-free living cells for rapid cytometry of apoptosis[J]. Nano Letters,2022,22(1):172 doi: 10.1021/acs.nanolett.1c03580 [75] GAO Z H,WEI C,YAN Y L,et al. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks[J]. Advanced Materials,2017,29(30):1701558 doi: 10.1002/adma.201701558 [76] RUAN J,GUO D,GE K,et al. Printable microlaser arrays with programmable modes for information encryption[J]. Nano Research,2023,16(7):10100 doi: 10.1007/s12274-023-5709-8 [77] REDDING B,CHOMA M A,CAO H. Speckle-free laser imaging using random laser illumination[J]. Nature Photonics,2012,6(6):355 doi: 10.1038/nphoton.2012.90 [78] 史晓玉,王兆娜,翟天瑞,等. 基于能量转移的多色随机激光器[J]. 物理学进展,2019,39(3):14 doi: 10.13725/j.cnki.pip.2019.03.001 [79] REDDING B,CERJAN A,HUANG X,et al. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging[J]. Proceedings of the National Academy of Sciences,2015,112(5):1304 doi: 10.1073/pnas.1419672112 [80] CHO S,HUMAR M,MARTINO N,et al. Laser particle stimulated emission microscopy[J]. Physical Review Letters,2016,117(19):193902 doi: 10.1103/PhysRevLett.117.193902 [81] LIU X W,KUANG C F,HAO X,et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Physical Review Letters,2017,118(7):076101 doi: 10.1103/PhysRevLett.118.076101 [82] WANG K Y,WANG S,XIAO S M,et al. Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging[J]. Advanced Functional Materials,2019,29(39):1904868 doi: 10.1002/adfm.201904868 [83] GAO Z S,WANG J H,SONG P,et al. Spaser nanoparticles for ultranarrow bandwidth STED super-resolution imaging[J]. Advanced Materials,2020,32(32):e1907233 [84] ZHAO J Y,YAN Y L,GAO Z H,et al. Full-color laser displays based on organic printed microlaser arrays[J]. Nature Communications,2019,10:870 doi: 10.1038/s41467-019-08834-6 -