• 中国科学引文数据库核心期刊
  • 中文核心期刊、中国科技核心期刊
  • 第1、2届国家期刊奖
  • 第3届国家期刊奖百种重点期刊奖
  • 中国精品科技期刊、中国百强报刊
  • 百种中国杰出学术期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ADP的状态约束互联非线性系统的分散镇定

赵博 杜文千 袁郭玲 孔杰

赵博, 杜文千, 袁郭玲, 孔杰. 基于ADP的状态约束互联非线性系统的分散镇定[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 749-757. doi: 10.12202/j.0476-0301.2023069
引用本文: 赵博, 杜文千, 袁郭玲, 孔杰. 基于ADP的状态约束互联非线性系统的分散镇定[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 749-757. doi: 10.12202/j.0476-0301.2023069
ZHAO Bo, DU Wenqian, YUAN Guoling, KONG Jie. Decentralized stabilization of state constrained interconnected nonlinear systems based on adaptive dynamic programming[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 749-757. doi: 10.12202/j.0476-0301.2023069
Citation: ZHAO Bo, DU Wenqian, YUAN Guoling, KONG Jie. Decentralized stabilization of state constrained interconnected nonlinear systems based on adaptive dynamic programming[J]. Journal of Beijing Normal University(Natural Science), 2023, 59(5): 749-757. doi: 10.12202/j.0476-0301.2023069

基于ADP的状态约束互联非线性系统的分散镇定

doi: 10.12202/j.0476-0301.2023069
基金项目: 国家自然科学基金资助项目(61973330),北京市自然科学基金资助项目(4212038)
详细信息
    通讯作者:

    赵博(1987—),男,博士,副教授. 研究方向:自适应动态规划与强化学习. E-mail:zhaobo@bnu.edu.cn

  • 中图分类号: TP13

Decentralized stabilization of state constrained interconnected nonlinear systems based on adaptive dynamic programming

  • 摘要: 针对一类含有常数型状态约束的互联非线性系统,提出一种基于自适应动态规划(adaptive dynamic programming,ADP)的分散镇定方法.引入边界函数对原系统进行坐标变换,将状态约束系统转化为无约束系统.对转化后的系统构造独立子系统和改进的代价函数,将鲁棒分散镇定问题转化为最优调节问题.构建局部评判神经网络并采用策略迭代算法求解哈密顿-雅可比-贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程,进而得到近似最优镇定律.通过李雅普诺夫稳定性理论证明了本文所提方法可使闭环互联系统和局部评判神经网络估计误差动态最终一致有界.数值仿真结果验证了所提出分散镇定方法的有效性.

     

  • 图  1  策略迭代算法

    图  2  独立子系统1、2局部评判神经网络权重演化过程

    图  3  所提出分散镇定律作用下子系统1、2状态

    图  4  现有基于ADP的分散镇定律作用下子系统1、2状态(未处理状态约束)

    图  5  双倒立摆系统

    图  6  独立子系统1、2局部评判神经网络权重演化过程

    图  7  所提出分散镇定律作用下子系统1、2状态

    图  8  现有基于ADP的分散镇定律作用下子系统1、2状态(未处理状态约束)

  • [1] 夏宏兵. 非线性系统的自学习优化安全调控方法研究[D]. 北京:北京师范大学,2023
    [2] BIAN T,JIANG Y,JIANG Z P. Decentralized adaptive optimal control of large-scale systems with application to power systems[J]. IEEE Transactions on Industrial Electronics,2015,62(4):2439 doi: 10.1109/TIE.2014.2345343
    [3] EL-ATTAR R,VIDYASAGAR M. Subsystem simplification in large-scale systems analysis[J]. IEEE Transactions on Automatic Control,1979,24(2):321 doi: 10.1109/TAC.1979.1102004
    [4] YANG X,HE H B. Adaptive dynamic programming for decentralized stabilization of uncertain nonlinear large-scale systems with mismatched interconnections[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(8):2870
    [5] WANG D,HE H B,LIU D R. Adaptive critic nonlinear robust control:a survey[J]. IEEE Transactions on Cybernetics,2017,47(10):3429 doi: 10.1109/TCYB.2017.2712188
    [6] ZHAO B,SHI G,LIU D R. Event-triggered local control for nonlinear interconnected systems through particle swarm optimization-based adaptive dynamic programming[J/OL]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, http://dx.doi.org/10.1109/TSMC.2023.3298065
    [7] ZHAO B,ZHANG Y W,LIU D R. Adaptive dynamic programming-based cooperative motion/force control for modular reconfigurable manipulators:a joint task assignment approach[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, http://dx.doi.org/10.1109/TNNLS.2022.3171828
    [8] LEWIS F L,VRABIE D. Reinforcement learning and adaptive dynamic programming for feedback control[J]. IEEE Circuits and Systems Magazine,2009,9(3):32 doi: 10.1109/MCAS.2009.933854
    [9] LEWIS F L,VRABIE D,VAMVOUDAKIS K G. Reinforcement learning and feedback control:using natural decision methods to design optimal adaptive controllers[J]. IEEE Control Systems Magazine,2012,32(6):76 doi: 10.1109/MCS.2012.2214134
    [10] WANG D. Robust policy learning control of nonlinear plants with case studies for a power system application[J]. IEEE Transactions on Industrial Informatics,2020,16(3):1733 doi: 10.1109/TII.2019.2925632
    [11] KHIABANI A G,HEYDARI A. Optimal torque control of permanent magnet synchronous motors using adaptive dynamic programming[J]. IET Power Electronics,2020,13(12):2442 doi: 10.1049/iet-pel.2019.1339
    [12] LIU R M,LI S K,YANG L X,et al. Energy-efficient subway train scheduling design with time-dependent demand based on an approximate dynamic programming approach[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(7):2475
    [13] ZHAO B,LIU D R,LUO C M. Reinforcement learning-based optimal stabilization for unknown nonlinear systems subject to inputs with uncertain constraints[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(10):4330 doi: 10.1109/TNNLS.2019.2954983
    [14] LIU Y J,TONG S C,LI D J,et al. Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint[J]. IEEE Transactions on Fuzzy Systems,2016,24(5):1147 doi: 10.1109/TFUZZ.2015.2505088
    [15] ZHANG L G,LIU X J. The synchronization between two discrete-time chaotic systems using active robust model predictive control[J]. Nonlinear Dynamics,2013,74(4):905 doi: 10.1007/s11071-013-1009-2
    [16] TEE K P,GE S S,TAY E H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems[J]. Automatica,2009,45(4):918 doi: 10.1016/j.automatica.2008.11.017
    [17] FAN Q Y,YANG G H. Nearly optimal sliding mode fault-tolerant control for affine nonlinear systems with state constraints[J]. Neurocomputing,2016,216:78 doi: 10.1016/j.neucom.2016.06.063
    [18] XIE C H,YANG G H. Model-free fault-tolerant control approach for uncertain state-constrained linear systems with actuator faults[J]. International Journal of Adaptive Control and Signal Processing,2017,31(2):223 doi: 10.1002/acs.2695
    [19] YANG Y L,DING D W,XIONG H Y,et al. Online barrier-actor-critic learning for H control with full-state constraints and input saturation[J]. Journal of the Franklin Institute,2020,357(6):3316 doi: 10.1016/j.jfranklin.2019.12.017
    [20] SONG R Z,LIU L,XIA L N,et al. Online optimal event-triggered H control for nonlinear systems with constrained state and input[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2023,53(1):131
    [21] VAMVOUDAKIS K G,LEWIS F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica,2010,46(5):878 doi: 10.1016/j.automatica.2010.02.018
    [22] ZHAO B,WANG D,SHI G A,et al. Decentralized control for large-scale nonlinear systems with unknown mismatched interconnections via policy iteration[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(10):1725
  • 加载中
图(8)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  76
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-29
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回